Zobrazeno 1 - 10
of 32
pro vyhledávání: '"Sergio Lerma-Hernández"'
Autor:
Saúl Pilatowsky-Cameo, David Villaseñor, Miguel A. Bastarrachea-Magnani, Sergio Lerma-Hernández, Lea F. Santos, Jorge G. Hirsch
Publikováno v:
Nature Communications, Vol 12, Iss 1, Pp 1-8 (2021)
It is generally believed that most eigenstates of quantum chaotic models are ergodic. In this work, the authors disprove this by showing that all eigenstates of the Dicke model in the chaotic regime are scarred, and that ergodicity is an ensemble pro
Externí odkaz:
https://doaj.org/article/edc978172de7476a8aea3beb56ffff1e
Autor:
David Villaseñor, Saúl Pilatowsky-Cameo, Miguel A. Bastarrachea-Magnani, Sergio Lerma-Hernández, Lea F. Santos, Jorge G. Hirsch
Publikováno v:
Entropy, Vol 25, Iss 1, p 8 (2022)
We present a detailed analysis of the connection between chaos and the onset of thermalization in the spin-boson Dicke model. This system has a well-defined classical limit with two degrees of freedom, and it presents both regular and chaotic regions
Externí odkaz:
https://doaj.org/article/b556d3b958ce4a98b3d574e309fdcdaf
Autor:
Saúl Pilatowsky-Cameo, David Villaseñor, Miguel A. Bastarrachea-Magnani, Sergio Lerma-Hernández, Lea F. Santos, Jorge G. Hirsch
Publikováno v:
Quantum, Vol 6, p 644 (2022)
There is no unique way to quantify the degree of delocalization of quantum states in unbounded continuous spaces. In this work, we explore a recently introduced localization measure that quantifies the portion of the classical phase space occupied by
Externí odkaz:
https://doaj.org/article/11327c49adbb4bf898be3dad30dec547
Autor:
Saúl Pilatowsky-Cameo, David Villaseñor, Miguel A Bastarrachea-Magnani, Sergio Lerma-Hernández, Lea F Santos, Jorge G Hirsch
Publikováno v:
New Journal of Physics, Vol 23, Iss 3, p 033045 (2021)
As the name indicates, a periodic orbit is a solution for a dynamical system that repeats itself in time. In the regular regime, periodic orbits are stable, while in the chaotic regime, they become unstable. The presence of unstable periodic orbits i
Externí odkaz:
https://doaj.org/article/9e7102ad604a481bbac28cd07974a42e
Publikováno v:
Physical Review Research, Vol 1, Iss 3, p 032021 (2019)
We present an exactly solvable p-wave pairing model for two bosonic species. The model is solvable in any spatial dimension and shares some commonalities with the p+ip Richardson-Gaudin fermionic model, such as a third-order quantum phase transition.
Externí odkaz:
https://doaj.org/article/5f4b62b589384ef085b935d5326ff124
Autor:
Miguel A. Bastarrachea-Magnani, David Villaseñor, Saúl Pilatowsky-Cameo, Lea F. Santos, Jorge G. Hirsch, Sergio Lerma-Hernández
Publikováno v:
Nature Communications, Vol 12, Iss 1, Pp 1-8 (2021)
Nature Communications
Pilatowsky-Cameo, S, Villaseñor, D, Bastarrachea-Magnani, M A, Lerma-Hernández, S, Santos, L F & Hirsch, J G 2021, ' Ubiquitous quantum scarring does not prevent ergodicity ', Nature Communications, vol. 12, 852 . https://doi.org/10.1038/s41467-021-21123-5
Nature Communications
Pilatowsky-Cameo, S, Villaseñor, D, Bastarrachea-Magnani, M A, Lerma-Hernández, S, Santos, L F & Hirsch, J G 2021, ' Ubiquitous quantum scarring does not prevent ergodicity ', Nature Communications, vol. 12, 852 . https://doi.org/10.1038/s41467-021-21123-5
In a classically chaotic system that is ergodic, any trajectory will be arbitrarily close to any point of the available phase space after a long time, filling it uniformly. Using Born's rules to connect quantum states with probabilities, one might th
Publikováno v:
Digital.CSIC. Repositorio Institucional del CSIC
instname
instname
6 pags., 3 figs.
Assisted by general symmetry arguments and a many-body invariant, we introduce a phase of matter that constitutes a topological SO(5) superfluid. Key to this finding is the realization of an exactly solvable model that displays
Assisted by general symmetry arguments and a many-body invariant, we introduce a phase of matter that constitutes a topological SO(5) superfluid. Key to this finding is the realization of an exactly solvable model that displays
Autor:
Saúl Pilatowsky-Cameo, David Villaseñor, Miguel A. Bastarrachea-Magnani, Sergio Lerma-Hernández, Lea F. Santos, Jorge G. Hirsch
Publikováno v:
Quantum, Vol 6, p 644 (2022)
There is no unique way to quantify the degree of delocalization of quantum states in unbounded continuous spaces. In this work, we explore a recently introduced localization measure that quantifies the portion of the classical phase space occupied by
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::2fb743e851943f718e9b4d6f88c019c5
http://arxiv.org/abs/2107.06894
http://arxiv.org/abs/2107.06894
Autor:
Miguel A. Bastarrachea-Magnani, Saúl Pilatowsky-Cameo, Jorge G. Hirsch, Sergio Lerma-Hernández, David Villaseñor
Publikováno v:
Physical Review E. 103
Measuring the degree of localization of quantum states in phase space is essential for the description of the dynamics and equilibration of quantum systems, but this topic is far from being understood. There is no unique way to measure localization,
Autor:
David Villaseñor, Sergio Lerma-Hernández, Saúl Pilatowsky-Cameo, Miguel A. Bastarrachea-Magnani, Jorge G. Hirsch, Lea F. Santos
Publikováno v:
Pilatowsky-Cameo, S, Villaseñor, D, Bastarrachea-Magnani, M A, Lerma-Hernández, S, Santos, L F & Hirsch, J G 2021, ' Quantum scarring in a spin-boson system : Fundamental families of periodic orbits ', New Journal of Physics, vol. 23, no. 3, 033045 . https://doi.org/10.1088/1367-2630/abd2e6
As the name indicates, a periodic orbit is a solution for a dynamical system that repeats itself in time. In the regular regime, periodic orbits are stable, while in the chaotic regime, they become unstable. The presence of unstable periodic orbits i
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::39563e6e6f4408466ace9a1bdea38c9b
https://pure.au.dk/portal/da/publications/quantum-scarring-in-a-spinboson-system(3a71cb2b-1017-4c29-8134-dcd3ed7c4e97).html
https://pure.au.dk/portal/da/publications/quantum-scarring-in-a-spinboson-system(3a71cb2b-1017-4c29-8134-dcd3ed7c4e97).html