Zobrazeno 1 - 10
of 15
pro vyhledávání: '"Sergio Grillo"'
Publikováno v:
Mathematics, Vol 9, Iss 12, p 1357 (2021)
In this paper, we study the extended Hamilton–Jacobi Theory in the context of dynamical systems with symmetries. Given an action of a Lie group G on a manifold M and a G-invariant vector field X on M, we construct complete solutions of the Hamilton
Externí odkaz:
https://doaj.org/article/9f06781dc9d84e74b479520ab762597a
Autor:
Sergio Grillo
Publikováno v:
Analysis and Mathematical Physics. 11
The non-commutative integrability (NCI) is a property fulfilled by some Hamiltonian systems that ensures, among other things, the exact solvability of their corresponding equations of motion. The latter means that an “explicit formula” for the tr
Publikováno v:
CONICET Digital (CONICET)
Consejo Nacional de Investigaciones Científicas y Técnicas
instacron:CONICET
Consejo Nacional de Investigaciones Científicas y Técnicas
instacron:CONICET
For an underactuated (simple) Hamiltonian system with two degrees of freedom and one degree of underactuation, a rather general condition that ensures its stabilizability, by means of the existence of a (simple) Lyapunov function, was found in a rece
Autor:
Sergio Grillo
Publikováno v:
CONICET Digital (CONICET)
Consejo Nacional de Investigaciones Científicas y Técnicas
instacron:CONICET
Consejo Nacional de Investigaciones Científicas y Técnicas
instacron:CONICET
Consider a symplectic manifold M, a Hamiltonian vector field X and a fibration Π:M→N. Related to these data we have a generalized version of the (time-independent) Hamilton–Jacobi equation: the Π-HJE for X, whose unknown is a section σ:N→M o
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::14c9481c3bd3b25ea6d16b8dd33a8e1e
https://www.sciencedirect.com/science/article/pii/S0393044019302256
https://www.sciencedirect.com/science/article/pii/S0393044019302256
Publikováno v:
CONICET Digital (CONICET)
Consejo Nacional de Investigaciones Científicas y Técnicas
instacron:CONICET
Physical Review
Consejo Nacional de Investigaciones Científicas y Técnicas
instacron:CONICET
Physical Review
We make a rigorous computation of the relative entropy between the vacuum state and a coherent state for a free scalar in the framework of algebraic description of quantum field theory (AQFT). We study the case of the Rindler wedge. Previous calculat
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::0216a584c1f63bd14addb0a5ca562934
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.99.125020
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.99.125020
Publikováno v:
Journal of Geometric Mechanics. 9:459-486
In this paper, we make a review of the controlled Hamiltonians (CH) method and its related matching conditions, focusing on an improved version recently developed by D.E. Chang. Also, we review the general ideas around the Lyapunov constraint based (
Publikováno v:
Journal of Geometric Mechanics. 13:629
In the context of underactuated Hamiltonian systems defined by simple Hamiltonian functions, the matching conditions of the energy shaping method split into two decoupled subsets of equations: the kinetic and potential equations. The unknown of the k
Publikováno v:
Journal of Geometric Mechanics. 13:533
The purpose of this paper is to perform an error analysis of the variational integrators of mechanical systems subject to external forcing. Essentially, we prove that when a discretization of contact order $r$ of the Lagrangian and force are used, th
Autor:
Sergio Grillo, Edith Padrón
Publikováno v:
CONICET Digital (CONICET)
Consejo Nacional de Investigaciones Científicas y Técnicas
instacron:CONICET
Consejo Nacional de Investigaciones Científicas y Técnicas
instacron:CONICET
A Hamilton–Jacobi theory for general dynamical systems, defined on fibered phase spaces, has been recently developed. In this paper, we shall apply such a theory to contact Hamiltonian systems, as those appearing in thermodynamics and on geodesic f
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::0847437172fdffa9d5f3735fdeb58de3
Autor:
Sergio Grillo, Edith Padrón
Publikováno v:
CONICET Digital (CONICET)
Consejo Nacional de Investigaciones Científicas y Técnicas
instacron:CONICET
Digital.CSIC. Repositorio Institucional del CSIC
instname
Consejo Nacional de Investigaciones Científicas y Técnicas
instacron:CONICET
Digital.CSIC. Repositorio Institucional del CSIC
instname
29 págs.
In this paper we develop, in a geometric framework, a Hamilton–Jacobi Theory for general dynamical systems. Such a theory contains the classical theory for Hamiltonian systems on a cotangent bundle and recent developments in the fram
In this paper we develop, in a geometric framework, a Hamilton–Jacobi Theory for general dynamical systems. Such a theory contains the classical theory for Hamiltonian systems on a cotangent bundle and recent developments in the fram
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::89f9ccc8ed37ddcc6dee766042875bb9
https://www.sciencedirect.com/science/article/pii/S0393044016301760
https://www.sciencedirect.com/science/article/pii/S0393044016301760