Zobrazeno 1 - 10
of 18
pro vyhledávání: '"Sergio Castillo Páez"'
Autor:
Andrés Tobar, Miguel Flores, Sergio Castillo-Páez, Salvador Naya, Sonia Zaragoza, Javier Tarrío-Saavedra
Publikováno v:
Energy Reports, Vol 10, Iss , Pp 244-254 (2023)
An automated methodology is proposed to identify anomalies in buildings’ HVAC systems, through Local Correlation Integral (LOCI) algorithm, improved by Bootstrap to obtain a rule from its score distribution. It has been performed to solve the case
Externí odkaz:
https://doaj.org/article/bb1b0efcc0f945ab9d6aee29e386241d
Publikováno v:
Revista Politécnica. 50:7-16
La circulación de noticias falsas en internet, especialmente las de sátira política a través de redes sociales, ha afectado a la mayoría de la población ecuatoriana. Este trabajo presenta una metodología basada en el aprendizaje estadístico q
Autor:
Danny Danny Zambrano-Vera, Giovanni Herrera-Enríquez, Eddy Castillo-Montesdeoca, Sergio Castillo-Páez, Pablo Ospina-Peralta
Publikováno v:
Revista Economía y Negocios, Vol 10, Iss 1 (2019)
El Ecuador, en la última década, presenta cambios en la estructura y funcionamiento del Sistema Nacional de Educación Superior, nos referimos específicamente al despliegue de proyectos en ciencia, investigación y desarrollo, tales como: Programa
Externí odkaz:
https://doaj.org/article/62e288598ba7440bbd8f1a22313afb08
Publikováno v:
Latin-American Journal of Computing, Vol 3, Iss 2, Pp 41-48 (2016)
This work aims to classify the DNA sequences of healthy and malignant cancer respectively. For this, supervised and unsupervised classification methods from a functional context are used; i.e. each strand of DNA is an observation. The observations ar
Externí odkaz:
https://doaj.org/article/077df3f337b847c29f3250449ff3713d
A nonparametric procedure to estimate the conditional probability that a geostatistical process exceeds a certain threshold value is proposed. The method consists of a bootstrap algorithm that combines conditional simulation techniques with nonparame
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::a40b18ced14ff8fdedda83fc410a14d9
https://doi.org/10.21203/rs.3.rs-1398694/v1
https://doi.org/10.21203/rs.3.rs-1398694/v1
Publikováno v:
Emerging Research in Intelligent Systems ISBN: 9783030960421
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::7b4e4a72e117a4d28aa3bf1c0c44a96d
https://doi.org/10.1007/978-3-030-96043-8_26
https://doi.org/10.1007/978-3-030-96043-8_26
Publikováno v:
Computational Statistics & Data Analysis. 137:1-15
The aim is to provide a nonparametric bootstrap method for spatial data, which can be either stationary or depart from the stationarity condition due to the presence of a non-constant trend. The proposed technique has been designed to reproduce the v
Publikováno v:
Artificial Intelligence, Computer and Software Engineering Advances ISBN: 9783030680824
This study addresses the relationship between different levels of COVID 19 infection in the provinces of Ecuador, with their sociodemographic characteristics. For this purpose, a panel data model is used to identify the individual fixed effects of ea
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::6c49ea13aacc7e290e48e8f23bee86ca
https://doi.org/10.1007/978-3-030-68083-1_6
https://doi.org/10.1007/978-3-030-68083-1_6
Publikováno v:
Spatial Statistics. 22:358-370
The current study aims to provide nonparametric estimators of the conditional variance and the dependence structure of a heteroscedastic spatial process. When assuming zero mean along the domain, the approximation of the variance can be addressed by
Publikováno v:
Stochastic Environmental Research and Risk Assessment. 32:675-684
In this work, a fully nonparametric geostatistical approach to estimate threshold exceeding probabilities is proposed. To estimate the large-scale variability (spatial trend) of the process, the nonparametric local linear regression estimator, with t