Zobrazeno 1 - 10
of 34
pro vyhledávání: '"Sergio Cantero‐Chinchilla"'
Autor:
Masoud Haghbin, Juan Chiachío, Sergio Muñoz, Jose Luis Escalona Franco, Antonio J. Guillén, Adolfo Crespo Marquez, Sergio Cantero-Chinchilla
Publikováno v:
Sensors, Vol 24, Iss 14, p 4627 (2024)
This paper presents a deep learning approach for predicting rail corrugation based on on-board rolling-stock vertical acceleration and forward velocity measurements using One-Dimensional Convolutional Neural Networks (CNN-1D). The model’s performan
Externí odkaz:
https://doaj.org/article/703836830adf4c2e8a46ee218d88ba44
Autor:
Wen Wu, Sergio Cantero-Chinchilla, Wang-ji Yan, Manuel Chiachio Ruano, Rasa Remenyte-Prescott, Dimitrios Chronopoulos
Publikováno v:
Sensors, Vol 23, Iss 8, p 4160 (2023)
In this paper, defect detection and identification in aluminium joints is investigated based on guided wave monitoring. Guided wave testing is first performed on the selected damage feature from experiments, namely, the scattering coefficient, to pro
Externí odkaz:
https://doaj.org/article/d33373df758c4fecb5013649977795a8
Autor:
Sergio Cantero-Chinchilla, James L. Beck, Juan Chiachío, Manuel Chiachío, Dimitrios Chronopoulos
Publikováno v:
SoftwareX, Vol 13, Iss , Pp 100643- (2021)
This paper presents OptiSens, a computational platform in Python and Matlab, that provides optimal sensor and actuator configurations for structural health monitoring applications using ultrasonic guided-waves. This software formulates a convex entro
Externí odkaz:
https://doaj.org/article/7d05517e41db4d2082148cf7bcce7843
Autor:
Sergio Cantero-Chinchilla, Gerardo Aranguren, José Manuel Royo, Manuel Chiachío, Josu Etxaniz, Andrea Calvo-Echenique
Publikováno v:
Sensors, Vol 21, Iss 3, p 993 (2021)
This paper proposes a new damage index named degree of health (DoH) to efficiently tackle structural damage monitoring in real-time. As a key contribution, the proposed index relies on a pattern matching methodology that measures the time-of-flight m
Externí odkaz:
https://doaj.org/article/ad1d84f93f9e4a59a843189687653a7a
Autor:
Gerardo Aranguren, Josu Etxaniz, Sergio Cantero-Chinchilla, Jose M. Gil-Garcia, Muhammad Khalid Malik
Publikováno v:
Sensors, Vol 20, Iss 18, p 5291 (2020)
Structural health monitoring comprises a set of techniques to detect defects appearing in structures. One of the most viable techniques is based on the guided ultrasonic wave test (UGWT), which consists of emitting waves throughout the structure, acq
Externí odkaz:
https://doaj.org/article/c11da9e09b884274b6ecc1fc06c7ee5e
Autor:
Sergio Cantero-Chinchilla, Gerardo Aranguren, Muhammad Khalid Malik, Josu Etxaniz, Federico Martín de la Escalera
Publikováno v:
Sensors, Vol 20, Iss 5, p 1445 (2020)
The development of reliable structural health monitoring techniques is enabling a healthy transition from preventive to condition-based maintenance, hence leading to safer and more efficient operation of different industries. Ultrasonic guided-wave b
Externí odkaz:
https://doaj.org/article/fa81c681389c46c081a9b098a05561c3
Publikováno v:
Zhu, Y-C, Chinchilla, S C, Meng, H, Yan, W-J & Chronopoulos, D 2023, ' Damage detection, quantification, and localization for resonant metamaterials using physics-based and data-driven methods ', STRUCTURAL HEALTH MONITORING . https://doi.org/10.1177/14759217231152434
Resonant metamaterials have attracted significant research interest in mechanical and acoustic engineering with applications in the fields of sound and vibration control thanks to their integrated tuned mass dampers. One prevailing issue regarding in
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::6527073d106dd026cc77646fdde11f6a
https://research-information.bris.ac.uk/ws/files/357622741/SHM_21_0215.R2_Accepted.pdf
https://research-information.bris.ac.uk/ws/files/357622741/SHM_21_0215.R2_Accepted.pdf
Autor:
Sergio Cantero‐Chinchilla, Costas Papadimitriou, Juan Chiachío, Manuel Chiachío, Petros Koumoutsakos, Adriano T. Fabro, Dimitrios Chronopoulos
Publikováno v:
Structural Control and Health Monitoring, 29 (12)
Sensing is the cornerstone of any functional structural health monitoring technology, with sensor number and placement being a key aspect for reliable monitoring. We introduce for the first time a robust methodology for optimal sensor configuration b
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::200658fd5e71c75eab74005e86ec0697
https://hdl.handle.net/20.500.11850/580580
https://hdl.handle.net/20.500.11850/580580
Autor:
Sergio Cantero-Chinchilla, Christopher A. Simpson, Alexander Ballisat, Anthony J. Croxford, Paul D. Wilcox
Publikováno v:
NDT & E International. 133:102756
Publikováno v:
Bayesian Inverse Problems ISBN: 9781315232973
Bayesian Inverse Problems
Bayesian Inverse Problems
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::4260a2b236e71433fe76aff766eb12b3
https://doi.org/10.1201/b22018-8
https://doi.org/10.1201/b22018-8