Zobrazeno 1 - 10
of 29
pro vyhledávání: '"Sergio Arciniegas-Alarcón"'
Publikováno v:
MethodsX, Vol 11, Iss , Pp 102289- (2023)
Some statistical analysis techniques may require complete data matrices, but a frequent problem in the construction of databases is the incomplete collection of information for different reasons. One option to tackle the problem is to estimate and im
Externí odkaz:
https://doaj.org/article/a5f8f581ad554c9fadc04156865f1bbb
Publikováno v:
MethodsX, Vol 9, Iss , Pp 101683- (2022)
This paper describes strategies to reduce the possible effect of outliers on the quality of imputations produced by a method that uses a mixture of two least squares techniques: regression and lower rank approximation of a matrix. To avoid the influe
Externí odkaz:
https://doaj.org/article/9de45bf5f1484530bbecbe3da22e378b
Publikováno v:
Applied System Innovation, Vol 5, Iss 4, p 69 (2022)
Several statistical techniques for analyzing data matrices use lower rank approximations to these matrices, for which, in general, the appropriate rank must first be estimated depending on the objective of the study. The estimation can be conducted b
Externí odkaz:
https://doaj.org/article/f646b4eecb2a4b7e90292f67a6f82863
Publikováno v:
Applied System Innovation, Vol 4, Iss 3, p 62 (2021)
We describe imputation strategies resistant to outliers, through modifications of the simple imputation method proposed by Krzanowski and assess their performance. The strategies use a robust singular value decomposition, do not depend on distributio
Externí odkaz:
https://doaj.org/article/a75cf5bfb24e4dd491a8f0a718c8ab2f
Publikováno v:
Crop Breeding and Applied Biotechnology, Vol 16, Iss 2, Pp 77-85 (2016)
We propose a new methodology for multiple imputation when faced with missing data in multi-environmental trials with genotype-by-environment interaction, based on the imputation system developed by Krzanowski that uses the singular value decompositio
Externí odkaz:
https://doaj.org/article/2f804c913c8647f9a64005fb6d736b22
Publikováno v:
Crop Science. 61:3288-3300
Publikováno v:
Revista Brasileira de Meteorologia, Vol 29, Iss 4, Pp 527-536 (2014)
Um problema comum em dados climáticos é a informação ausente. Recentemente, foram desenvolvidos quatro métodos de imputação que têm como base a decomposição por valores singulares de uma matriz (DVS). O objetivo deste artigo é avaliar os n
Externí odkaz:
https://doaj.org/article/03a04d59e8344f538998e8406c5c1d0a
Publikováno v:
Pesquisa Agropecuária Brasileira, Vol 49, Iss 9, Pp 683-691 (2014)
O objetivo deste trabalho foi propor um novo algoritmo de imputação múltipla livre de distribuição, por meio de modificações no método de imputação simples recentemente desenvolvido por Yan para contornar o problema de desbalanceamento de e
Externí odkaz:
https://doaj.org/article/cfd7cdf77a4b46549b468d47e1c9fcad
Publikováno v:
Applied System Innovation; Volume 5; Issue 4; Pages: 69
Several statistical techniques for analyzing data matrices use lower rank approximations to these matrices, for which, in general, the appropriate rank must first be estimated depending on the objective of the study. The estimation can be conducted b
Autor:
Pedro Marinho AMOÊDO, Sônia Maria de Stefano PIEDADE, Carlos Tadeu dos Santos DIAS, Sergio ARCINIEGAS-ALARCÓN
Publikováno v:
Brazilian Journal of Biometrics. 40
Dados ausentes s˜ao comuns em experimentos multiambientais por mais bem planejados que sejam, por isso, o uso de m´etodos de an´alises apropriados ´e essencial para reduzir o impacto gerado pela perda de informa¸c˜oes. A imputa¸c˜ao de dados