Zobrazeno 1 - 10
of 68
pro vyhledávání: '"Sergey Neshveyev"'
Publikováno v:
Forum of Mathematics, Pi, Vol 11 (2023)
We establish an equivalence between two approaches to quantization of irreducible symmetric spaces of compact type within the framework of quasi-coactions, one based on the Enriquez–Etingof cyclotomic Knizhnik–Zamolodchikov (KZ) equations and the
Externí odkaz:
https://doaj.org/article/e0191d66c009486b987ea81a050084b6
Publikováno v:
Oberwolfach Reports. 18:2397-2458
Publikováno v:
Communications in Mathematical Physics. 378:1875-1929
Given a quasi-lattice ordered group (G, P) and a compactly aligned product system X of essential $$\hbox {C}^*$$ C ∗ -correspondences over the monoid P, we show that there is a bijection between the gauge-invariant $$\hbox {KMS}_\beta $$ KMS β -st
Publikováno v:
Journal of Geometry and Physics. 136:268-283
We consider the Hecke pair consisting of the group P K + of affine transformations of a number field K that preserve the orientation in every real embedding and the subgroup P O + consisting of transformations with algebraic integer coefficients. The
Publikováno v:
JOURNAL OF NONCOMMUTATIVE GEOMETRY
Let $H$ be the C*-algebra of a non-trivial compact quantum group acting freely on a unital C*-algebra $A$. It was recently conjectured that there does not exist an equivariant $*$-homomorphism from $A$ (type-I case) or $H$ (type-II case) to the equiv
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::fd73c42cde3b6ffaf7d76d460dd60b7b
http://hdl.handle.net/10852/83344
http://hdl.handle.net/10852/83344
Autor:
Sergey Neshveyev, Johannes Christensen
Motivated by the problem of characterizing KMS states on the reduced C$^*$-algebras of \'etale groupoids, we show that the reduced norm on these algebras induces a C$^*$-norm on the group algebras of the isotropy groups. This C$^*$-norm coincides wit
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::c0d174eb706469da3467c7d3e5f6d083
Autor:
Makoto Yamashita, Sergey Neshveyev
Publikováno v:
Annales scientifiques de l'École normale supérieure. 50:927-972
Given a rigid C*-tensor category C with simple unit and a probability measure $\mu$ on the set of isomorphism classes of its simple objects, we define the Poisson boundary of $(C,\mu)$. This is a new C*-tensor category P, generally with nonsimple uni
Autor:
Sergey Neshveyev, Pavel Etingof
Publikováno v:
arXiv
We develop a method to give presentations of quantized function algebras of complex reductive groups. In particular, we give presentations of quantized function algebras of automorphism groups of finite dimensional simple complex Lie algebras. Keywor
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::74459906227f172205f0626df22c45b1
http://hdl.handle.net/10852/74880
http://hdl.handle.net/10852/74880
Publikováno v:
Communications in Mathematical Physics
Let $\mathfrak u$ be a compact semisimple Lie algebra, and $\sigma$ be a Lie algebra involution of $\mathfrak u$. Let Rep$_q(\mathfrak u)$ be the ribbon braided tensor C*-category of $U_q(\mathfrak u)$-representations for $0
Comment: v2: new ref
Comment: v2: new ref