Zobrazeno 1 - 5
of 5
pro vyhledávání: '"Sergey Maksymenko"'
Publikováno v:
E3S Web of Conferences, Vol 258, p 10001 (2021)
The article is dedicated to the analysis of psychological techniques used in psychological practice to determine the combat stress among aviation professionals. The relevance of the article is due to the active interest of modern researchers in this
Autor:
Sergey Maksymenko
Publikováno v:
Topology and its Applications. 130:183-204
Let Φ be a flow on a smooth, compact, finite-dimensional manifold M. Consider the subset D (Φ) of C∞(M,M) consisting of diffeomorphisms of M preserving the foliation of the flow Φ. Let also D 0 (Φ) be the identity path component of D (Φ) with
Autor:
Sergey Maksymenko
Let $(F_t)$ be a smooth flow on a smooth manifold $M$ and $h:M\to M$ be a smooth orbit preserving map. The following problem is studied: suppose that for every point $z$ of $M$ there exists a germ of a smooth function $f_z$ at $z$ such that near $z$
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::0e4b01f4d7b732987014f01a9ad585a7
http://arxiv.org/abs/0902.2418
http://arxiv.org/abs/0902.2418
Autor:
Sergey Maksymenko
Publikováno v:
Foliations 2005.
Let $M$ be a smooth ($C^{\infty}$) manifold, $F_1,...,F_n$ be vector fields on $M$ generating the corresponding flows $\Phi_1,...,\Phi_n$, and $\alpha_1,...,\alpha_{n}:M\to \mathbb{R}$ smooth functions. Define the following map $f:M\to M$ by $$f(x)=
Autor:
Sergey Maksymenko
Publikováno v:
Scopus-Elsevier
Let $M$ be a compact surface and $P$ be a one dimensional manifold without boundary, that is the line $\mathbb{R}^1$ or a circle $S^1$. The classification of path-components of the space of Morse maps from $M$ into $P$ was recently obtained by S. V.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::672a8d5c2a066bf8e86147cddeee424e