Zobrazeno 1 - 10
of 49
pro vyhledávání: '"Sergei Yakovenko"'
Autor:
Leanne Mezuman, Sergei Yakovenko
We study the problem of decomposition (non-commutative factorization) of linear ordinary differential operators near an irregular singular point. The solution (given in terms of the Newton diagram and the respective characteristic numbers) is known f
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::afeca0df0598a993893a324429e4acda
Autor:
Sergei Yakovenko, Gal Binyamini
Publikováno v:
Annales de l’institut Fourier. 59:2891-2926
Nous etudions le probleme d'une borne superieure effective sur le nombre des racines isolees des solutions de systemes de type Fuchs sur la sphere de Riemann. Le resultat principal est une borne explicite non uniforme a croissance polynomiale sur la
Autor:
Sergei Yakovenko, Dmitry Novikov
Publikováno v:
Moscow Mathematical Journal. 3:551-591
We prove that under certain spectral assumptions on the monodromy group, solutions of Fuchsian systems of linear equations on the Riemann sphere admit explicit global bounds on the number of their isolated zeros.
Autor:
Sergei Yakovenko
Publikováno v:
ARNOLD: Swimming Against the Tide
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::5c1c4244a036e827f28540ac586180d6
https://doi.org/10.1090/mbk/086/25
https://doi.org/10.1090/mbk/086/25
Autor:
Shira Tanny, Sergei Yakovenko
We study the local classification of higher order Fuchsian linear differential equations under various refinements of the classical notion of the "type of differential equation" introduced by Frobenius. The main source of difficulties is the fact tha
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e9648ea1c172ece4a7b0a25efe6b19b4
Autor:
Sergei Yakovenko
Publikováno v:
Nonlinearity. 13:1087-1094
If a convergent Taylor series f(z) = ?j?0 aj z j satisfies the condition |aj| ? M |ak| for some k and all j > k, then one can explicitly determine in terms of M and k the radius of a centred disc containing no more than k roots of f. This problem was
Autor:
Sergei Yakovenko
Publikováno v:
The Arnoldfest. :497-525
Autor:
Dmitry Novikov, Sergei Yakovenko
Publikováno v:
Electronic Research Announcements of the American Mathematical Society. 5:55-65
The tangential Hilbert 16th problem is to place an upper bound for the number of isolated ovals of algebraic level curves { H ( x , y ) = const } \{H(x,y)=\operatorname {const}\} over which the integral of a polynomial 1-form P ( x , y ) d x + Q ( x
Autor:
Dmitri Novikov, Sergei Yakovenko
Publikováno v:
Annales de l’institut Fourier. 49:563-609
To Yuli˘i Sergeevich Ilyashenko who taught us so much, on his 55th birthday Abstract. We give an explicit upper bound for the number of isolated inter- sections between an integral curve of a polynomial vector field in R n and an algebraic hypersurf
Autor:
Sergei Yakovenko, A. Grigoriev
Publikováno v:
Journal of Differential Equations. 150:349-362
We study the local topological structure of generic multijet preimages of algebraic varieties and prove their stratifiability with additional quantitative estimates. The result is a necessary technical tool for analyzing bifurcations of periodic orbi