Zobrazeno 1 - 10
of 141
pro vyhledávání: '"Sergei O. Kuznetsov"'
Publikováno v:
PLoS ONE, Vol 17, Iss 10 (2022)
Artificial intelligence and machine learning have demonstrated remarkable results in science and applied work. However, present AI models, developed to be run on computers but used in human-driven applications, create a visible disconnect between AI
Externí odkaz:
https://doaj.org/article/062e35df2a8143c2a3ec50960905aa2c
Publikováno v:
International Journal of Approximate Reasoning
International Journal of Approximate Reasoning, 2022, 145, pp.75-90. ⟨10.1016/j.ijar.2021.12.012⟩
International Journal of Approximate Reasoning, 2022, 145, pp.75-90. ⟨10.1016/j.ijar.2021.12.012⟩
International audience
Publikováno v:
2022 IEEE International Conference on Data Mining (ICDM).
Publikováno v:
Asian Journal of Economics and Banking. 4:67-85
Purpose The purpose of this study is to show that closure-based classification and regression models provide both high accuracy and interpretability. Design/methodology/approach Pattern structures allow one to approach the knowledge extraction proble
Publikováno v:
Data Mining and Knowledge Discovery
Data Mining and Knowledge Discovery, Springer, 2021, ⟨10.1007/s10618-021-00799-9⟩
Data Mining and Knowledge Discovery, 2022, 36 (1), pp.108--145. ⟨10.1007/s10618-021-00799-9⟩
Data Mining and Knowledge Discovery, Springer, 2021, ⟨10.1007/s10618-021-00799-9⟩
Data Mining and Knowledge Discovery, 2022, 36 (1), pp.108--145. ⟨10.1007/s10618-021-00799-9⟩
Pattern mining is well established in data mining research, especially for mining binary datasets. Surprisingly, there is much less work about numerical pattern mining and this research area remains under-explored. In this paper we propose Mint, an e
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::6b3c4bee95a91d86e217908fc9fa93a1
https://hal.archives-ouvertes.fr/hal-03437629
https://hal.archives-ouvertes.fr/hal-03437629
Publikováno v:
Lecture Notes in Networks and Systems ISBN: 9783030871772
In this work, we consider an application of pattern structures to the task of semantic information retrieval. We review the existing techniques of lattice-based information retrieval and introduce a novel approach to defining similarity of documents
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::3d1dda4e0a0c9f954414a12c184f691f
https://doi.org/10.1007/978-3-030-87178-9_41
https://doi.org/10.1007/978-3-030-87178-9_41
Autor:
Alexander Karelin, Julia Abugova, G.A. Novichkova, Gusel Scharapova, Konstantin Kondratchik, Arend von Stackelberg, Alexander Karachunskiy, Lebedev Vv, Natalia Judina, Oleg Bydanov, N.V. Myakova, T. V. Nasedkina, Natalia Korepanova, Julia Roumiantseva, Almira Chervova, Dmitry Litvinov, Sergei O. Kuznetsov, Natalia Ponomareva, Olga V. Ryskal, O. R. Arakaev, Svetlana Lagoiko, Lyudmila Bajdun, Irina Spichak, Joachim Boos, Alexander Rumjanzew, Günter Henze, Larisa Fechina, Gesche Tallen, Evgeniya Inyushkina, Marina Goroshkova, Alexander Shapochnik, Shamardina Av, Olga V. Aleinikova
Publikováno v:
Journal of Cancer Research and Clinical Oncology
Purpose Favorable outcomes were achieved for children with acute lymphoblastic leukemia (ALL) with the first Russian multicenter trial Moscow–Berlin (ALL-MB) 91. One major component of this regimen included a total of 18 doses of weekly intramuscul
This book constitutes the post-conference proceedings of the 25th International Conference on Data Analytics and Management in Data Intensive Domains, DAMDID/RCDL 2023, held in Moscow, Russia, during 24-27 October 2023. The 21 papers presented here w
Autor:
Egor Dudyrev, Sergei O. Kuznetsov
Publikováno v:
Formal Concept Analysis ISBN: 9783030778668
ICFCA
ICFCA
Decision trees and their ensembles are very popular models of supervised machine learning. In this paper we merge the ideas underlying decision trees, their ensembles and FCA by proposing a new supervised machine learning model which can be construct
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::6159d99b6a51d51159bdd00a00c6ccf9
https://doi.org/10.1007/978-3-030-77867-5_16
https://doi.org/10.1007/978-3-030-77867-5_16