Zobrazeno 1 - 10
of 108
pro vyhledávání: '"Sergei M. Grudsky"'
Publikováno v:
Linear Algebra and its Applications. 653:86-115
In this paper we study the eigenvalues of the laplacian matrices of the cyclic graphs with one edge of weight $\alpha$ and the others of weight $1$. We denote by $n$ the order of the graph and suppose that $n$ tends to infinity. We notice that the ch
Autor:
Manuel Bogoya, Sergei M. Grudsky
Publikováno v:
Numerical Linear Algebra with Applications.
Autor:
M. I. Karyakin, Vladislav V. Kravchenko, Stefan Samko, Anatoly V. Kozak, Vadim Kryakvin, Sergei M. Grudsky, Yakov M. Erusalimskii, Alexey Karapetyants
Publikováno v:
Complex Variables and Elliptic Equations. 67:517-522
Autor:
Mauricio Barrera, Sergei M. Grudsky
Publikováno v:
Complex Variables and Elliptic Equations. 67:556-580
In Barrera M, Grudsky SM. Asymptotics of eigenvalues for pentadiagonal symmetric Toeplitz matrices. In: Large truncated Toeplitz matrices, toeplitz operators, and related topics. Operator theory: a...
A method for practical realization of the inverse scattering transform method for the Korteweg-de Vries equation is proposed. It is based on analytical representations for Jost solutions and for integral kernels of transformation operators obtained r
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e5ea1b751d6bedd039f5c55c6cc97ae7
Fine spectral estimates with applications to the optimally fast solution of large FDE linear systems
In the present article we consider a type of matrices stemming in the context of the numerical approximation of distributed order fractional differential equations (FDEs). From one side they could look standard, since they are real, symmetric and pos
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::546e5368d90b596fc76407ce6bc77200
http://arxiv.org/abs/2112.02681
http://arxiv.org/abs/2112.02681
Autor:
S.S. Mihalkovich, E. Ramírez de Arellano, Sergei M. Grudsky, V.A. Stukopin, A.A. Batalshchikov, I.S. Malisheva
Publikováno v:
Linear Algebra and its Applications. 580:292-335
This paper is devoted to the asymptotic behavior of all eigenvalues of the increasing finite principal sections of an infinite symmetric (in general non-Hermitian) Toeplitz matrix. The symbol of the infinite matrix is supposed to be moderately smooth
Publikováno v:
Integral Equations and Operator Theory. 93
Toeplitz matrices are typically non-Hermitian and hence they evade the well-elaborated machinery one can employ in the Hermitian case. In a pioneering paper of 1960, Palle Schmidt and Frank Spitzer showed that the eigenvalues of large banded Toeplitz
Publikováno v:
Operator Theory and Harmonic Analysis ISBN: 9783030774929
In this paper we study the asymptotic behavior of the eigenvalues of Hermitian Toeplitz matrices with the entries 2, −1, 0, …, 0, −α in the first column. Notice that the generating symbol depends on the order n of the matrix. This matrix famil
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::433aaa539403d9a794279311ca5ba854
https://doi.org/10.1007/978-3-030-77493-6_11
https://doi.org/10.1007/978-3-030-77493-6_11
Publikováno v:
Operator Algebras, Toeplitz Operators and Related Topics ISBN: 9783030446505
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::c33242656d1c8ad36005a7d144f0725f
https://doi.org/10.1007/978-3-030-44651-2_3
https://doi.org/10.1007/978-3-030-44651-2_3