Zobrazeno 1 - 10
of 76
pro vyhledávání: '"Sergeev, Sergey M."'
In this paper we present a new solution of the star-triangle relation having positive Boltzmann weights. The solution defines an exactly solvable two-dimensional Ising-type (edge interaction) model of statistical mechanics where the local "spin varia
Externí odkaz:
http://arxiv.org/abs/2310.08427
We show that the celebrated six-vertex model of statistical mechanics (along with its multistate generalizations) can be reformulated as an Ising-type model with only a two-spin interaction. Such a reformulation unravels remarkable factorization prop
Externí odkaz:
http://arxiv.org/abs/2205.10708
Autor:
Sergeev, Sergey M.
Publikováno v:
In Partial Differential Equations in Applied Mathematics September 2024 11
Publikováno v:
In Nuclear Physics, Section B July 2024 1004
Publikováno v:
In Nuclear Physics, Section B January 2023 986
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Kashaev, Rinat M., Sergeev, Sergey M.
Motivated by applications for non-perturbative topological strings in toric Calabi--Yau manifolds, we discuss the spectral problem for a pair of commuting modular conjugate (in the sense of Faddeev) Harper type operators, corresponding to a special c
Externí odkaz:
http://arxiv.org/abs/1703.06016
Publikováno v:
J. Phys. A: Math. Theor. 49 (2016) 464001
In this paper we give an overview of exactly solved edge-interaction models, where the spins are placed on sites of a planar lattice and interact through edges connecting the sites. We only consider the case of a single spin degree of freedom at each
Externí odkaz:
http://arxiv.org/abs/1602.07076
Publikováno v:
Nuclear Physics B926 (2018) 509-543
For every quantized Lie algebra there exists a map from the tensor square of the algebra to itself, which by construction satisfies the set-theoretic Yang-Baxter equation. This map allows one to define an integrable discrete quantum evolution system
Externí odkaz:
http://arxiv.org/abs/1501.06984
Publikováno v:
J. Phys. A: Math. Theor., v. 46, 465206 (2013)
In this paper we construct a three-dimensional (3D) solvable lattice model with non-negative Boltzmann weights. The spin variables in the model are assigned to edges of the 3D cubic lattice and run over an infinite number of discrete states. The Bolt
Externí odkaz:
http://arxiv.org/abs/1308.4773