Zobrazeno 1 - 10
of 25
pro vyhledávání: '"Sera, Martin"'
Autor:
Sera, Martin
Publikováno v:
Mathematische Zeitschrift volume 304, Article number: 46 (2023)
We consider generalized (mixed) Monge-Amp\`ere products of quasiplurisubharmonic functions (with and without analytic singularities) as they were introduced and studied in several articles written by subsets of M. Andersson, E. Wulcan, Z. B{\l}ocki,
Externí odkaz:
http://arxiv.org/abs/2203.13499
Publikováno v:
Bull. London Math. Soc. 52 (2020) 77--93
We consider mixed Monge-Amp\`ere products of quasiplurisubharmonic functions with analytic singularities, and show that such products may be regularized as explicit one parameter limits of mixed Monge-Amp\`ere products of smooth functions, generalizi
Externí odkaz:
http://arxiv.org/abs/1907.01386
Publikováno v:
Indiana Univ. Math. J. 71 (2022), no. 1, 153-189
We define Chern and Segre forms, or rather currents, associated with a Griffiths positive singular hermitian metric $h$ with analytic singularities on a holomorphic vector bundle $E$. The currents are constructed as pushforwards of generalized Monge-
Externí odkaz:
http://arxiv.org/abs/1802.06614
Autor:
Kalm, Håkan Samuelsson, Sera, Martin
Publikováno v:
Mathematica Scandinavica 126, no. 2 (May 2020), 221-228
For a reduced pure dimensional complex space $X$, we show that if Barlet's recently introduced sheaf $\alpha_X^1$ of holomorphic $1$-forms or the sheaf of germs of weakly holomorphic $1$-forms is locally free, then $X$ is smooth. Moreover, we discuss
Externí odkaz:
http://arxiv.org/abs/1709.09833
Publikováno v:
Advances in Mathematics 326 (2018), 465 - 489
We study singular hermitian metrics on holomorphic vector bundles, following Berndtsson-P{\u{a}}un. Previous work by Raufi has shown that for such metrics, it is in general not possible to define the curvature as a current with measure coefficients.
Externí odkaz:
http://arxiv.org/abs/1608.05542
Autor:
Sera, Martin
Publikováno v:
J. Geom. Anal. 26 (2016), no. 3, 1891--1912
We present a generalization of Takegoshi's relative version of the Grauert-Riemenschneider vanishing theorem. Under some natural assumptions, we extend Takegoshi's vanishing theorem to the case of Nakano semi-positive coherent analytic sheaves on sin
Externí odkaz:
http://arxiv.org/abs/1411.2830
Autor:
Ruppenthal, Jean, Sera, Martin
Publikováno v:
Annales de l'institut Fourier, 67 no. 1 (2017), p. 237-265
We study the transformation of torsion-free coherent analytic sheaves under proper modifications. More precisely, we study direct images of inverse image sheaves, and torsion-free preimages of direct image sheaves. Under some conditions, it is shown
Externí odkaz:
http://arxiv.org/abs/1308.3973
Autor:
Ruppenthal, Jean, Sera, Martin
Publikováno v:
Journal of Singularities 11 (2015), 67-84
We present a comprehensive $L^2$-theory for the $\overline\partial$-operator on singular complex curves, including $L^2$-versions of the Riemann-Roch theorem and some applications.
Comment: 19 pages
Comment: 19 pages
Externí odkaz:
http://arxiv.org/abs/1304.5930
Publikováno v:
In Advances in Mathematics 21 February 2018 326:465-489
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.