Zobrazeno 1 - 10
of 52
pro vyhledávání: '"Ser-Nam Lim"'
Autor:
Junke Wang, Zuxuan Wu, Jingjing Chen, Xintong Han, Abhinav Shrivastava, Ser-Nam Lim, Yu-Gang Jiang
Recent advances in image editing techniques have posed serious challenges to the trustworthiness of multimedia data, which drives the research of image tampering detection. In this paper, we propose ObjectFormer to detect and localize image manipulat
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::58e11bfd22291fecd12bef70766c919d
http://arxiv.org/abs/2203.14681
http://arxiv.org/abs/2203.14681
Autor:
Ser-Nam Lim, Xintong Han, Peng Zhou, Bor-Chun Chen, Larry S. Davis, Mahyar Najibi, Abhinav Shrivastava
Publikováno v:
AAAI
Detecting manipulated images has become a significant emerging challenge. The advent of image sharing platforms and the easy availability of advanced photo editing software have resulted in a large quantities of manipulated images being shared on the
Publikováno v:
Lecture Notes in Computer Science ISBN: 9783031197741
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::ad6bd74492324b0918097ee8169782f2
https://doi.org/10.1007/978-3-031-19775-8_38
https://doi.org/10.1007/978-3-031-19775-8_38
Publikováno v:
Lecture Notes in Computer Science ISBN: 9783031198113
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::51b904cb11d46d40abba29cbb4cc033c
https://doi.org/10.1007/978-3-031-19812-0_18
https://doi.org/10.1007/978-3-031-19812-0_18
Autor:
Jingwei Ma, Lucy Chai, Minyoung Huh, Tongzhou Wang, Ser-Nam Lim, Phillip Isola, Antonio Torralba
Publikováno v:
Lecture Notes in Computer Science ISBN: 9783031197802
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::c861365b480e27a99c00a273af0503a9
https://doi.org/10.1007/978-3-031-19781-9_10
https://doi.org/10.1007/978-3-031-19781-9_10
Publikováno v:
2021 IEEE/CVF International Conference on Computer Vision (ICCV).
Visual engagement in social media platforms comprises interactions with photo posts including comments, shares, and likes. In this paper, we leverage such visual engagement clues as supervisory signals for representation learning. However, learning f
Autor:
Yipin Zhou, Ser-Nam Lim
Publikováno v:
2021 IEEE/CVF International Conference on Computer Vision (ICCV).
While deep neural networks have achieved remarkable success in various computer vision tasks, they often fail to generalize to new domains and subtle variations of input images. Several defenses have been proposed to improve the robustness against th
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::6a86efd5124b0aa9318f92893c957ee5
Autor:
Ser-Nam Lim, Chao Yang
Publikováno v:
CVPR
In this paper, we propose a framework capable of generating face images that fall into the same distribution as that of a given one-shot example. We leverage a pre-trained StyleGAN model that already learned the generic face distribution. Given the o
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::9f0bda51f1d293d0bf4b05e5367acd57
http://arxiv.org/abs/2003.12869
http://arxiv.org/abs/2003.12869
Publikováno v:
Computer Vision – ECCV 2020 ISBN: 9783030585945
ECCV (25)
ECCV (25)
Deep metric learning papers from the past four years have consistently claimed great advances in accuracy, often more than doubling the performance of decade-old methods. In this paper, we take a closer look at the field to see if this is actually tr
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::fb1b75709f3b6022a7020b40da31b558
https://doi.org/10.1007/978-3-030-58595-2_41
https://doi.org/10.1007/978-3-030-58595-2_41