Zobrazeno 1 - 10
of 25
pro vyhledávání: '"Separation bound"'
Publikováno v:
Journal of Symbolic Computation
Journal of Symbolic Computation, 2020, 101, pp.128-151. ⟨10.1016/j.jsc.2019.07.001⟩
Journal of Symbolic Computation, Elsevier, 2020, 101, pp.128-151. ⟨10.1016/j.jsc.2019.07.001⟩
Journal of Symbolic Computation, 2020, 101, pp.128-151. ⟨10.1016/j.jsc.2019.07.001⟩
Journal of Symbolic Computation, Elsevier, 2020, 101, pp.128-151. ⟨10.1016/j.jsc.2019.07.001⟩
International audience; We rely on aggregate separation bounds for univariate polynomials to introduce novel worst-case separation bounds for the isolated roots of zero-dimensional, positive-dimensional, and overde- termined polynomial systems. We ex
Publikováno v:
Journal of Symbolic Computation
Journal of Symbolic Computation, Elsevier, 2021, Special Issue on Milestones in Computer Algebra (MICA 2016), 105, pp.145-164. ⟨10.1016/j.jsc.2020.06.005⟩
Journal of Symbolic Computation, 2021, Special Issue on Milestones in Computer Algebra (MICA 2016), 105, pp.145-164. ⟨10.1016/j.jsc.2020.06.005⟩
Journal of Symbolic Computation, Elsevier, 2021, Special Issue on Milestones in Computer Algebra (MICA 2016), 105, pp.145-164. ⟨10.1016/j.jsc.2020.06.005⟩
Journal of Symbolic Computation, 2021, Special Issue on Milestones in Computer Algebra (MICA 2016), 105, pp.145-164. ⟨10.1016/j.jsc.2020.06.005⟩
We exploit structure in polynomial system solving by considering polynomials that are linear in subsets of the variables. We focus on algorithms and their Boolean complexity for computing isolating hyperboxes for all the isolated complex roots of wel
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::6b0c3ba776bf65a2a45b8ab0d8fc0334
https://hal.inria.fr/hal-02099556
https://hal.inria.fr/hal-02099556
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
ISSAC 2017-International Symposium on Symbolic and Algebraic Computation
ISSAC 2017-International Symposium on Symbolic and Algebraic Computation, Jul 2017, Kaiserslautern, Germany. pp.8, ⟨10.1145/3087604.3087653⟩
ISSAC
ISSAC 2017-International Symposium on Symbolic and Algebraic Computation, Jul 2017, Kaiserslautern, Germany. pp.8, ⟨10.1145/3087604.3087653⟩
ISSAC
International audience; We present explicit worst case degree and height bounds for the rational univariate representation of the isolated roots of polynomial systems based on mixed volume. We base our estimations on height bounds of resultants and w
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::483364fcc71ea41a4760c562b22d3a88
https://inria.hal.science/hal-01528377/document
https://inria.hal.science/hal-01528377/document
Autor:
Tsigaridas, Elias
Publikováno v:
Theoretical Computer Science
Theoretical Computer Science, Elsevier, 2012, pp.1-12
Theoretical Computer Science, 2012, pp.1-12
Theoretical Computer Science, Elsevier, 2012, pp.1-12
Theoretical Computer Science, 2012, pp.1-12
International audience; We consider the problem of isolating the real roots of a square-free polynomial with integer coefficients using the classic variant of the continued fraction algorithm (CF), introduced by Akritas. %% We compute a lower bound o
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::5c242e3543ae83e14bf26e3781bb6ece
https://hal.inria.fr/hal-00776230/file/et-improve-bd-cf.pdf
https://hal.inria.fr/hal-00776230/file/et-improve-bd-cf.pdf
Publikováno v:
Proceedings of the 2010 International Symposium on Symbolic and Algebraic Computation
Proceedings of the 2010 International Symposium on Symbolic and Algebraic Computation, Jul 2010, Munich, Germany. pp.243-250, ⟨10.1145/1837934.1837981⟩
Emiris, I Z, Mourrain, B & Tsigaridas, E 2010, ' The DMM Bound : Multivariate (Aggregrate) Separation Bounds ', International Symposium on Symbolic and Algebraic Computation, pp. 243-250 . https://doi.org/10.1145/1837934.1837981
ISSAC
Proceedings of the 2010 International Symposium on Symbolic and Algebraic Computation, Jul 2010, Munich, Germany. pp.243-250, ⟨10.1145/1837934.1837981⟩
Emiris, I Z, Mourrain, B & Tsigaridas, E 2010, ' The DMM Bound : Multivariate (Aggregrate) Separation Bounds ', International Symposium on Symbolic and Algebraic Computation, pp. 243-250 . https://doi.org/10.1145/1837934.1837981
ISSAC
Best paper award; International audience; In this paper we derive aggregate separation bounds, named after Davenport-Mahler-Mignotte (\dmm), on the isolated roots of polynomial systems, specifically on the minimum distance between any two such roots.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::5139a826d30129dbedd94d626603c5cd
http://arxiv.org/abs/1005.5610
http://arxiv.org/abs/1005.5610
Publikováno v:
Preceedings of International Symposium on Symbolic and Algebraic Computation
ISSAC
ISSAC, Jul 2010, Munich, Germany. pp.235-242, ⟨10.1145/1837934.1837980⟩
Scopus-Elsevier
Emiris, I Z, Galligo, A & Tsigaridas, E 2010, ' Random polynomials and expected complexity of bisection methods for real solving ', International Symposium on Symbolic and Algebraic Computation, pp. 235-242 . https://doi.org/10.1145/1837934.1837980
ISSAC
ISSAC, Jul 2010, Munich, Germany. pp.235-242, ⟨10.1145/1837934.1837980⟩
Scopus-Elsevier
Emiris, I Z, Galligo, A & Tsigaridas, E 2010, ' Random polynomials and expected complexity of bisection methods for real solving ', International Symposium on Symbolic and Algebraic Computation, pp. 235-242 . https://doi.org/10.1145/1837934.1837980
International audience; Our probabilistic analysis sheds light to the following questions: Why do random polynomials seem to have few, and well separated real roots, on the average? Why do exact algorithms for real root isolation may perform comparat
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::23de1732abc0901f90a13f34f3b83bff
Autor:
Emiris, Ioannis, Tsigaridas, Elias P.
Publikováno v:
[Research Report] RR-6043, INRIA. 2006, pp.18
This paper presents the average-case bit complexity of subdivision-based univariate solvers, namely those named after Sturm, Descartes, and Bernstein. By real solving we mean real root isolation. We prove bounds of $\sOB(N^5)$ for all methods, where
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::aa518dfa438abb1663c61985a67e391c
https://hal.inria.fr/inria-00116985v5/document
https://hal.inria.fr/inria-00116985v5/document