Zobrazeno 1 - 10
of 103
pro vyhledávání: '"Sepúlveda, Daniel"'
Autor:
Mejías, Wilson, Sepúlveda, Daniel
This study presents a mathematical model that describes the relationship between the Puma concolor and its prey using delay differential equations, a Holling type III functional response, logistic growth for the prey, and a Ricker-type function to mo
Externí odkaz:
http://arxiv.org/abs/2407.07904
Publikováno v:
In Communications in Nonlinear Science and Numerical Simulation May 2024 132
Autor:
Ossandón, Gustavo, Sepúlveda, Daniel
This article studies an $\omega$-periodic system of Nicholson-type differential equations with nonlinear density-dependent mortality rate. Using the degree theory we obtain sufficient conditions for the existence of a positive solution $\omega$-perio
Externí odkaz:
http://arxiv.org/abs/2001.10522
Publikováno v:
In Journal of Differential Equations 5 December 2021 303:156-182
Autor:
Sepúlveda, Daniel
We study approximation of non-autonomous linear differential equations with variable delay over infinite intervals. We use piecewise constant argument to obtain a corresponding discrete difference equation. The study of numerical approximation over a
Externí odkaz:
http://arxiv.org/abs/1607.06960
In this paper, ordinary and exponential dichotomies are defined in differential equations with equations with piecewise constant argument of general type. We prove the asymptotic equivalence between the bounded solutions of a linear system and a pert
Externí odkaz:
http://arxiv.org/abs/1508.06154
Publikováno v:
In Nonlinear Analysis: Real World Applications October 2020 55
Existence of almost automorphic solutions for abstract delayed differential equations is established. Using ergodicity, exponential dichotomy and Bi-almost automorphicity on the homogeneous part, sufficient conditions for the existence and uniqueness
Externí odkaz:
http://arxiv.org/abs/1411.3267
Autor:
Ossandón, Gustavo1, Sepúlveda, Daniel1 daniel.sepulveda@utem.cl
Publikováno v:
Electronic Journal of Qualitative Theory of Differential Equations. 2023, p1-18. 18p.
Autor:
Ossandón, Gustavo, Sepúlveda, Daniel
Publikováno v:
Differential Equations & Dynamical Systems; Apr2024, Vol. 32 Issue 2, p489-503, 15p