Zobrazeno 1 - 10
of 109
pro vyhledávání: '"Sengupta, Ambar N."'
A scheme for generating weakly lower semi-continuous action functionals corresponding to the Euler-Lagrange equations of Chern-Simons theory is described. Coercivity is deduced for such a functional in appropriate function spaces to prove the existen
Externí odkaz:
http://arxiv.org/abs/2411.17635
Autor:
Acharya, Amit, Sengupta, Ambar N.
A method for designing variational principles for the dynamics of a possibly dissipative and non-conservatively forced chain of particles is demonstrated. Some qualitative features of the formulation are discussed.
Externí odkaz:
http://arxiv.org/abs/2311.00106
Autor:
Acharya, Amit, Sengupta, Ambar N.
A methodology for deriving dual variational principles for the classical Newtonian mechanics of mass points in the presence of applied forces, interaction forces, and constraints, all with a general dependence on particle velocities and positions, is
Externí odkaz:
http://arxiv.org/abs/2306.10616
Autor:
Conrad, Keith, Sengupta, Ambar N.
We obtain results describing the behavior of the action of rotation generators on polynomials over a commutative ring. We also explore harmonic polynomials in a purely algebraic setting.
Comment: 53 pages
Comment: 53 pages
Externí odkaz:
http://arxiv.org/abs/2101.03130
We construct and study pushforwards of categorical connections on categorical principal bundles. Applying this construction to the case of decorated path spaces in principal bundles, we obtain a transformation of classical connections that combines t
Externí odkaz:
http://arxiv.org/abs/2012.08454
Autor:
Peterson, Amy, Sengupta, Ambar N.
We show that a natural class of orthogonal polynomials on large spheres in $N$ dimensions tend to Hermite polynomials in the large-$N$ limit. We determine the behavior of the spherical Laplacian as well as zonal harmonic polynomials in the large-$N$
Externí odkaz:
http://arxiv.org/abs/1903.07697
Autor:
Peterson, Amy, Sengupta, Ambar N.
Publikováno v:
Communications on Stochastic Analysis 12 (2019) no. 3. Article 4
We show that for a suitable class of functions of finitely-many variables, the limit of integrals along slices of a high dimensional sphere is a Gaussian integral on a corresponding finite-codimension affine subspace in infinite dimensions.
Externí odkaz:
http://arxiv.org/abs/1903.07693
Autor:
Peterson, Amy, Sengupta, Ambar N.
Publikováno v:
Journal of Functional Analysis 276 (2018), no. 3, 815-866
We show that the limit of integrals along slices of a high dimensional sphere is a Gaussian integral on a corresponding finite-codimension affine subspace in infinite dimensions.
Externí odkaz:
http://arxiv.org/abs/1903.07555
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Conrad, Keith, Sengupta, Ambar N.
Publikováno v:
In Journal of Algebra 15 December 2022 612:379-430