Zobrazeno 1 - 10
of 42
pro vyhledávání: '"Sen, Abhrojyoti"'
This article is devoted to exploring the Lipschitz truncation method for parabolic multi-phase problems. The method is based on Whitney decomposition and covering lemmas with a delicate comparison scheme of appropriate alternatives to distinguish pha
Externí odkaz:
http://arxiv.org/abs/2501.00183
Autor:
Sen, Abhrojyoti
This article establishes an interior gradient higher integrability result for weak solutions to parabolic multi-phase problems. The prototype equation for the parabolic multi-phase problem of $p$-Laplace type is given by \[ u_t - \operatorname{div} \
Externí odkaz:
http://arxiv.org/abs/2406.00763
Autor:
Sen, Abhrojyoti, Sen, Anupam
This article addresses the question concerning the existence of global entropy solution for generalized Eulerian droplet models with air velocity depending on both space and time variables. When $f(u)=u,$ $\kappa(t)=const.$ and $u_a(x,t)=const.$ in (
Externí odkaz:
http://arxiv.org/abs/2312.11089
Autor:
Modasiya, Mitesh, Sen, Abhrojyoti
We consider Dirichlet problems for fully nonlinear mixed local-nonlocal non-translation invariant operators. For a bounded $C^2$ domain $\Omega \subset \mathbb{R}^d,$ let $u\in C(\mathbb{R}^d)$ be a viscosity solution of such Dirichlet problem. We ob
Externí odkaz:
http://arxiv.org/abs/2301.02397
Autor:
Sen, Abhrojyoti
Let $\Omega\subset \mathbb{R}^n $ be any open set and $u$ be a weak supersolution of $\mathcal{L}u=c(x)g(|u|)\frac{u}{|u|}$ where \[\mathcal{L}u(x)=\text{p.v.} \int_{\mathbb{R}^n} g\left(\frac{|u(x)-u(y)|}{|x-y|^s}\right) \frac{u(x)-u(y)}{|u(x)-u(y)|
Externí odkaz:
http://arxiv.org/abs/2208.13498
A Lax-Oleinik type explicit formula for 1D scalar balance laws has been recently obtained for the pure initial value problem by Adimurthi et al. in [1]. In this article, by introducing a suitable boundary functional, we establish a Lax-Oleinik type f
Externí odkaz:
http://arxiv.org/abs/2206.04986
Let $\Omega$ be a bounded $C^2$ domain in $\mathbb{R}^n$ and $u\in C(\mathbb{R}^n)$ solves \begin{equation*} \begin{aligned} \Delta u + a Iu + C_0|Du| \geq -K\quad \text{in}\; \Omega, \quad \Delta u + a Iu - C_0|Du|\leq K \quad \text{in}\; \Omega, \q
Externí odkaz:
http://arxiv.org/abs/2204.07389
Publikováno v:
In Journal of Mathematical Analysis and Applications 1 May 2024 533(1)
Autor:
Sahoo, Manas Ranjan, Sen, Abhrojyoti
The aim of this article is to study the limiting behavior of the solutions for the scaled generalized Euler equations of compressible fluid flow. When the initial data is of Riemann type, we showed the existence of solution which consists of shock wa
Externí odkaz:
http://arxiv.org/abs/1907.07044
Autor:
Sahoo, Manas Ranjan, Sen, Abhrojyoti
We study the limiting behavior of the solutions of Euler equations of one-dimensional compressible fluid flow as the pressure like term vanishes. This system can be thought of as an approximation for the one dimensional model for large scale structur
Externí odkaz:
http://arxiv.org/abs/1802.07645