Zobrazeno 1 - 10
of 4 583
pro vyhledávání: '"Semilinear heat equation"'
Autor:
Hisa, Kotaro, Ishige, Kazuhiro
We study qualitative properties of initial traces of nonnegative solutions to a semilinear heat equation in a smooth domain under the Dirichlet boundary condition. Furthermore, for the corresponding Cauchy--Dirichlet problem, we obtain sharp necessar
Externí odkaz:
http://arxiv.org/abs/2412.06200
Autor:
Kojima, Mizuki
In this paper, we derive sufficient conditions on initial data for the local-in-time solvability of a time-fractional semilinear heat equation with the Fujita exponent in a uniformly local weak Zygmund type space. It is known that the time-fractional
Externí odkaz:
http://arxiv.org/abs/2408.14897
Existence of solutions to the fractional semilinear heat equation with a singular inhomogeneous term
We study the existence of solutions to the fractional semilinear heat equation with a singular inhomogeneous term. For this aim, we establish decay estimates of the fractional heat semigroup in several uniformly local Zygumnd spaces. Furthermore, we
Externí odkaz:
http://arxiv.org/abs/2407.17769
Autor:
CHABI, Loth Damagui
We characterize the asymptotic behavior near blowup points for positive solutions of the semilinear heat equation \begin{equation*} \partial_t u-\Delta u =f(u), \end{equation*} for nonlinearities which are genuinely non scale invariant, unlike in the
Externí odkaz:
http://arxiv.org/abs/2409.12660
Autor:
Kouachi, Said
In this paper we prove that positive weak solutions for quasilinear parabolic equations on bounded domains subject to homogenous Neumann boundary conditions becme classical and global under the unique condition that the reaction doesn't change sign a
Externí odkaz:
http://arxiv.org/abs/2409.06606
Autor:
Oliveira, Geronimo, Viana, Arlúcio
In this work, we study the heat equation with Grushin's operator. We present an expression for its heat kernel and get regularity properties and decay on $L^p$ spaces for both heat Kernel and semigroup associated to Grushin's operator. Next, we use t
Externí odkaz:
http://arxiv.org/abs/2409.06578
Autor:
Chabi, Loth Damagui, Souplet, Philippe
We consider the semilinear heat equation $$u_t-\Delta u=f(u) $$ for a large class of non scale invariant nonlinearities of the form $f(u)=u^pL(u)$, where $p>1$ is Sobolev subcritical and $L$ is a slowly varying function (which includes for instance l
Externí odkaz:
http://arxiv.org/abs/2404.11863
We propose an alternative proof of the classical result of type-I blowup with log correction for the semilinear equation. Compared with previous proofs, we use a novel idea of enforcing stable normalizations for perturbation around the approximate pr
Externí odkaz:
http://arxiv.org/abs/2404.09410
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.