Zobrazeno 1 - 7
of 7
pro vyhledávání: '"Semih Akbayrak"'
Publikováno v:
Entropy, Vol 23, Iss 7, p 815 (2021)
Variational Message Passing (VMP) provides an automatable and efficient algorithmic framework for approximating Bayesian inference in factorized probabilistic models that consist of conjugate exponential family distributions. The automation of Bayesi
Externí odkaz:
https://doaj.org/article/9c31a773ddde4ca7859d81135f6607fb
Publikováno v:
International Journal of Approximate Reasoning, 148, 235-252. Elsevier
Stochastic approximation methods for variational inference have recently gained popularity in the probabilistic programming community since these methods are amenable to automation and allow online, scalable, and universal approximate Bayesian infere
Publikováno v:
2022 IEEE 61st Conference on Decision and Control (CDC), 7309-7314
STARTPAGE=7309;ENDPAGE=7314;TITLE=2022 IEEE 61st Conference on Decision and Control (CDC)
STARTPAGE=7309;ENDPAGE=7314;TITLE=2022 IEEE 61st Conference on Decision and Control (CDC)
We present a variational Bayesian identification procedure for polynomial NARMAX models based on message passing on a factor graph. Message passing allows us to obtain full posterior distributions for regression coefficients, precision parameters and
Publikováno v:
2022 30th European Signal Processing Conference (EUSIPCO).
Publikováno v:
ISIT
Senoz, I, Podusenko, A, Akbayrak, S, Mathys, C & de Vries, B 2021, The switching Hierarchical Gaussian Filter . in 2021 IEEE International Symposium on Information Theory (ISIT) . IEEE, pp. 1373-1378, IEEE International Symposium on Information Theory (ISIT), Melbourne, Australia, 12/07/2021 . https://doi.org/10.1109/ISIT45174.2021.9518229
2021 IEEE International Symposium on Information Theory, ISIT 2021-Proceedings, 1373-1378
STARTPAGE=1373;ENDPAGE=1378;TITLE=2021 IEEE International Symposium on Information Theory, ISIT 2021-Proceedings
Senoz, I, Podusenko, A, Akbayrak, S, Mathys, C & de Vries, B 2021, The switching Hierarchical Gaussian Filter . in 2021 IEEE International Symposium on Information Theory (ISIT) . IEEE, pp. 1373-1378, IEEE International Symposium on Information Theory (ISIT), Melbourne, Australia, 12/07/2021 . https://doi.org/10.1109/ISIT45174.2021.9518229
2021 IEEE International Symposium on Information Theory, ISIT 2021-Proceedings, 1373-1378
STARTPAGE=1373;ENDPAGE=1378;TITLE=2021 IEEE International Symposium on Information Theory, ISIT 2021-Proceedings
In this paper we discuss variational message passing-based (VMP) inference in a switching Hierarchical Gaussian Filter (HGF). An HGF is a flexible hierarchical state space model that supports closed-form VMP-based approximate inference for tracking o
Autor:
Bert de Vries, Semih Akbayrak
Publikováno v:
EUSIPCO 2019-27th European Signal Processing Conference
EUSIPCO
EUSIPCO
In this paper we consider efficient message passing based inference in a factor graph representation of a probabilistic model. Current message passing methods, such as belief propagation, variational message passing or expectation propagation, rely o
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::3814b99af2af009e02a62abd1821a292
https://doi.org/10.23919/EUSIPCO.2019.8902930
https://doi.org/10.23919/EUSIPCO.2019.8902930
Publikováno v:
Latent Variable Analysis and Signal Separation ISBN: 9783319937632
LVA/ICA
LVA/ICA
We develop an extension to Poisson factorization, to model Multinomial data using a moment parametrization. Our construction is an alternative to the canonical construction of generalized linear models. This is achieved by defining K component Poisso
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::3c594e7e57fa5a1767205d9ed7abbb16
https://doi.org/10.1007/978-3-319-93764-9_3
https://doi.org/10.1007/978-3-319-93764-9_3