Zobrazeno 1 - 10
of 3 384
pro vyhledávání: '"Semicontinuity"'
Autor:
Li Xintao, Pan Shiyao
Publikováno v:
Demonstratio Mathematica, Vol 57, Iss 1, Pp 285-300 (2024)
This study deals with the limiting dynamics for stochastic complex Ginzburg-Landau systems with time-varying delays and multiplicative noise on unbounded thin domains. We first prove the existence and uniqueness of pullback tempered random attractors
Externí odkaz:
https://doaj.org/article/197f34e055334ac083aeb31652e1926b
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Journal of Inequalities and Applications, Vol 2024, Iss 1, Pp 1-12 (2024)
Abstract The current study focuses on exploring the stability of solution sets pertaining to set optimization problems, particularly with regard to the set order relation outlined by Karaman et al. 2018. Sufficient conditions are provided for the low
Externí odkaz:
https://doaj.org/article/f9a37bfe9ae849568a21e07e24401475
Autor:
Taiyong Li, Yanhui Wei
Publikováno v:
Journal of Inequalities and Applications, Vol 2023, Iss 1, Pp 1-10 (2023)
Abstract In this paper we investigate the stability of solution sets for set optimization problems via improvement sets. Some sufficient conditions for the upper semicontinuity, lower semicontinuity, and compactness of E-minimal solution mappings are
Externí odkaz:
https://doaj.org/article/9fb2dbe95271458ea7bb30776160a8f4
Autor:
Jacson Simsen
Publikováno v:
Electronic Journal of Differential Equations, Vol 2023, Iss 50,, Pp 1-13 (2023)
Externí odkaz:
https://doaj.org/article/7119f23ba97c4cdd88c331c7d3f969bc
Autor:
Raúl Fierro, Sergio Pizarro
Publikováno v:
Cubo, Vol 25, Iss 1, Pp 151-159 (2023)
In this note, we prove a fixed point existence theorem for set-valued functions by extending the usual Banach orbital condition concept for single valued mappings. As we show, this result applies to various types of set-valued contractions existing i
Externí odkaz:
https://doaj.org/article/3fc13314dc604a018ae0e8e3bc02c2bc