Zobrazeno 1 - 10
of 2 765
pro vyhledávání: '"Semi-algebraic set"'
Autor:
Hilany, Boulos El, Tsigaridas, Elias
We present precise bit and degree estimates for the optimal value of the polynomial optimization problem $f^*:=\text{inf}_{x\in \mathscr{X}}~f(x)$, where $\mathscr{X}$ is a semi-algebraic set satisfying some non-degeneracy conditions. Our bounds depe
Externí odkaz:
http://arxiv.org/abs/2407.17093
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Mai, Ngoc Hoang Anh
Given a polynomial $f$ and a semi-algebraic set $S$, we provide a symbolic algorithm to find the equations and inequalities defining a semi-algebraic set $Q$ which is identical to the closure of the image of $S$ under $f$, i.e., \begin{equation} Q=\o
Externí odkaz:
http://arxiv.org/abs/2210.13933
Autor:
Basu, Saugata, Percival, Sarah
Let $\mathrm{R}$ be a real closed field and $\mathrm{C}$ the algebraic closure of $\mathrm{R}$. We give an algorithm for computing a semi-algebraic basis for the first homology group, $\mathrm{H}_1(S,\mathbb{F})$, with coefficients in a field $\mathb
Externí odkaz:
http://arxiv.org/abs/2107.08947
We study families of faces for convex semi-algebraic sets via the normal cycle which is a semi-algebraic set similar to the conormal variety in projective duality theory. We propose a convex algebraic notion of a "patch" -- a term recently coined by
Externí odkaz:
http://arxiv.org/abs/2104.13306
We provide a systematic deterministic numerical scheme to approximate the volume (i.e. the Lebesgue measure) of a basic semi-algebraic set whose description follows a sparsity pattern. As in previous works (without sparsity), the underlying strategy
Externí odkaz:
http://arxiv.org/abs/1902.02976
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Tacchi, Matteo1,2 (AUTHOR) tacchi@laas.fr, Weisser, Tillmann3 (AUTHOR), Lasserre, Jean Bernard1,4 (AUTHOR), Henrion, Didier1,5 (AUTHOR)
Publikováno v:
Foundations of Computational Mathematics. Feb2022, Vol. 22 Issue 1, p161-209. 49p.
Autor:
Din, Mohab Safey El, Tsigaridas, Elias
Let $\RR$ be a real closed field (e.g. the field of real numbers) and $\mathscr{S} \subset \RR^n$ be a semi-algebraic set defined as the set of points in $\RR^n$ satisfying a system of $s$ equalities and inequalities of multivariate polynomials in $n
Externí odkaz:
http://arxiv.org/abs/1304.1928
Autor:
Lasserre, Jean-Bernard
Let $K\subset R^n$ be a compact basic semi-algebraic set. We provide a necessary and sufficient condition (with no a priori bounding parameter) for a real sequence $y=(y_\alpha)$, $\alpha\in N^n$, to have a finite representing Borel measure absolutel
Externí odkaz:
http://arxiv.org/abs/1304.1716