Zobrazeno 1 - 5
of 5
pro vyhledávání: '"Semen Kiselev"'
Autor:
Bulat Ibragimov, Kirill Arzamasov, Bulat Maksudov, Semen Kiselev, Alexander Mongolin, Tamerlan Mustafaev, Dilyara Ibragimova, Ksenia Evteeva, Anna Andreychenko, Sergey Morozov
Publikováno v:
Scientific Reports, Vol 13, Iss 1, Pp 1-14 (2023)
Abstract In 2020, an experiment testing AI solutions for lung X-ray analysis on a multi-hospital network was conducted. The multi-hospital network linked 178 Moscow state healthcare centers, where all chest X-rays from the network were redirected to
Externí odkaz:
https://doaj.org/article/97a405c86d6f4705984b55bde6076b92
Autor:
Danis Alukaev, Semen Kiselev, Tamerlan Mustafaev, Ahatov Ainur, Bulat Ibragimov, Tomaž Vrtovec
Publikováno v:
European Spine Journal. 31:2115-2124
To propose a fully automated deep learning (DL) framework for the vertebral morphometry and Cobb angle measurement from three-dimensional (3D) computed tomography (CT) images of the spine, and validate the proposed framework on an external database.T
Autor:
Imad Eddine Ibrahim Bekkouch, Bulat Maksudov, Semen Kiselev, Tamerlan Mustafaev, Tomaž Vrtovec, Bulat Ibragimov
Publikováno v:
Bekkouch, I E I, Maksudov, B, Kiselev, S, Mustafaev, T, Vrtovec, T & Ibragimov, B 2022, ' Multi-landmark environment analysis with reinforcement learning for pelvic abnormality detection and quantification ', Medical Image Analysis, vol. 78, 102417 . https://doi.org/10.1016/j.media.2022.102417
Morphological abnormalities of the femoroacetabular (hip) joint are among the most common human musculoskeletal disorders and often develop asymptomatically at early easily treatable stages. In this paper, we propose an automated framework for landma
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::26416117be6e1236a7474f74a601fccb
https://curis.ku.dk/portal/da/publications/multilandmark-environment-analysis-with-reinforcement-learning-for-pelvic-abnormality-detection-and-quantification(2b29131c-9edb-4d52-88a4-c4430277894d).html
https://curis.ku.dk/portal/da/publications/multilandmark-environment-analysis-with-reinforcement-learning-for-pelvic-abnormality-detection-and-quantification(2b29131c-9edb-4d52-88a4-c4430277894d).html
Publikováno v:
2021 International Conference "Nonlinearity, Information and Robotics" (NIR).
Autor:
Semen Kiselev, Bulat Ibragimov, Konstantin Kubrak, Ilyas Sirazitdinov, Maksym Kholiavchenko, Alexey Tolkachev
Publikováno v:
Artificial Neural Networks and Machine Learning – ICANN 2020 ISBN: 9783030616083
ICANN (1)
ICANN (1)
Bone suppression in chest x-rays is an important processing step that can often improve visual detection of lung pathologies hidden under ribs or clavicle shadows. Current diagnostic imaging protocol does not include hardware-based bone suppression,
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::e15d059ca65c40e30e65416fe303fead
https://doi.org/10.1007/978-3-030-61609-0_20
https://doi.org/10.1007/978-3-030-61609-0_20