Zobrazeno 1 - 10
of 98
pro vyhledávání: '"Selvitella, Alessandro"'
Publikováno v:
In Journal of Theoretical Biology 7 December 2024 595
Autor:
Yousefnezhad, Muhammad, Selvitella, Alessandro, Zhang, Daoqiang, Greenshaw, Andrew J., Greiner, Russell
Multi-voxel pattern analysis (MVPA) learns predictive models from task-based functional magnetic resonance imaging (fMRI) data, for distinguishing when subjects are performing different cognitive tasks -- e.g., watching movies or making decisions. MV
Externí odkaz:
http://arxiv.org/abs/2010.15594
Deep Representational Similarity Learning for analyzing neural signatures in task-based fMRI dataset
Similarity analysis is one of the crucial steps in most fMRI studies. Representational Similarity Analysis (RSA) can measure similarities of neural signatures generated by different cognitive states. This paper develops Deep Representational Similari
Externí odkaz:
http://arxiv.org/abs/2010.02012
Hyperalignment has been widely employed in Multivariate Pattern (MVP) analysis to discover the cognitive states in the human brains based on multi-subject functional Magnetic Resonance Imaging (fMRI) datasets. Most of the existing HA methods utilized
Externí odkaz:
http://arxiv.org/abs/2001.02894
Autor:
Selvitella, Alessandro
In this thesis, we present some new results in distribution theory for both discrete and continuous random variables, together with their motivating applications. We start with some results about the Multivariate Gaussian Distribution and its charact
Externí odkaz:
http://hdl.handle.net/11375/22097
Autor:
Selvitella, Alessandro
In this thesis, we discuss some results on the distribution of points on the sphere, asymptotically when both the number of points and the dimension of the sphere tend to infinity. We then give some applications of these results to some statistical p
Externí odkaz:
http://hdl.handle.net/11375/13405
Autor:
Sawalha, Jeffrey, Cao, Liping, Chen, Jianshan, Selvitella, Alessandro, Liu, Yang, Yang, Chanjuan, Li, Xuan, Zhang, Xiaofei, Sun, Jiaqi, Zhang, Yamin, Zhao, Liansheng, Cui, Liqian, Zhang, Yizhi, Sui, Jie, Greiner, Russell, Li, Xin-min, Greenshaw, Andrew, Li, Tao, Cao, Bo
Publikováno v:
In Journal of Affective Disorders 1 March 2021 282:662-668
Autor:
Franke, Beate, Plante, Jean-François, Roscher, Ribana, Lee, Annie, Smyth, Cathal, Hatefi, Armin, Chen, Fuqi, Gil, Einat, Schwing, Alexander, Selvitella, Alessandro, Hoffman, Michael M., Grosse, Roger, Hendricks, Dieter, Reid, Nancy
Publikováno v:
Int Stat Rev 84 (2017) 371-389
The need for new methods to deal with big data is a common theme in most scientific fields, although its definition tends to vary with the context. Statistical ideas are an essential part of this, and as a partial response, a thematic program on stat
Externí odkaz:
http://arxiv.org/abs/1509.02900
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Franke, Beate, Plante, Jean-François, Roscher, Ribana, Lee, En-Shiun Annie, Smyth, Cathal, Hatefi, Armin, Chen, Fuqi, Gil, Einat, Schwing, Alexander, Selvitella, Alessandro, Hoffman, Michael M., Grosse, Roger, Hendricks, Dieter, Reid, Nancy
Publikováno v:
International Statistical Review / Revue Internationale de Statistique, 2016 Dec 01. 84(3), 371-389.
Externí odkaz:
https://www.jstor.org/stable/44162504