Zobrazeno 1 - 10
of 14
pro vyhledávání: '"Selma Negzaoui"'
Autor:
Salem Ben Said, Selma Negzaoui
Publikováno v:
Journal of Inequalities and Applications, Vol 2022, Iss 1, Pp 1-18 (2022)
Abstract In this paper, we introduce a family of one-dimensional maximal operators M κ , m $\mathscr{M}_{\kappa ,m}$ , κ ≥ 0 $\kappa \geq 0$ and m ∈ N ∖ { 0 } $m\in \mathbb{N}\setminus \{0\}$ , which includes the Hardy–Littlewood maximal op
Externí odkaz:
https://doaj.org/article/aae77a214f1e46c9859c4bdec7e28e0e
Autor:
Hatem Mejjaoli, Selma Negzaoui
Publikováno v:
Journal of Pseudo-Differential Operators and Applications. 14
Publikováno v:
Pure and Applied Chemistry. 93:1343-1350
This paper deals with gender gap in Mathematics across Africa. Reducing the gender gap in Mathematics in Africa, is the major aim of African Women in Mathematics Association (AWMA) through various activities. Using macrodata from two international su
Autor:
Sara Oukili, Selma Negzaoui
Publikováno v:
Results in Mathematics. 76
In this paper, we consider the deformed Hankel transform $${\mathscr {F}}_{\kappa } $$ , which is a deformation of the Hankel transform by a parameter $$\kappa >\frac{1}{4}$$ . We introduce, via modulus of continuity, a function subspace of $$L^p(d\m
Autor:
Mohamed Sifi, Selma Negzaoui
Publikováno v:
Integral Transforms and Special Functions. 31:424-436
In this paper, we consider the Bessel Fourier transform on the Weyl chamber which generalizes Hankel transform and coincides with the restriction of the Dunkl transform associated to the reflection...
Autor:
Sami Rebhi, Selma Negzaoui
Publikováno v:
Mathematical Inequalities & Applications. :825-836
Publikováno v:
Integral Transforms and Special Functions
Integral Transforms and Special Functions, Taylor & Francis, 2021, pp.1-17. ⟨10.1080/10652469.2021.1926454⟩
Integral Transforms and Special Functions, Taylor & Francis, 2021, pp.1-17. ⟨10.1080/10652469.2021.1926454⟩
In this paper, we consider the normalized Bessel function of index $\alpha > -\frac{1}{2}$, we find an integral representation of the term $x^nj_{\alpha+n}(x)j_\alpha(y)$. This allows us to establish a product formula for the generalized Hankel funct
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::39238f29773566ef244b0aa70343d123
https://hal.archives-ouvertes.fr/hal-03278827
https://hal.archives-ouvertes.fr/hal-03278827
Autor:
Salem Ben Saïd, Selma Negzaoui
Publikováno v:
Journal of Mathematical Physics. 63:033504
A large family of Flett potentials is investigated. Formally, these potentials are negative powers of the operators id + | x|1−1/ mΔ k, where Δ k is the Dunkl Laplace (differential and difference) operator on [Formula: see text]. Here, k ≥ 0 an
Autor:
Selma Negzaoui
Publikováno v:
Integral Transforms and Special Functions. 27:685-697
In this paper, we consider the Bessel–Struve transform FBSα and we establish an analogous of Beurling-Hormander's theorem for each α>−12. More precisely, we determine the form of nonzero functions satisfying weaken condition of Beurling–Horma
Autor:
Selma Negzaoui
Publikováno v:
Mathematical Inequalities & Applications. :523-534