Zobrazeno 1 - 10
of 20
pro vyhledávání: '"Selime Gürol"'
Publikováno v:
Journal of Advances in Modeling Earth Systems, Vol 15, Iss 4, Pp n/a-n/a (2023)
Abstract Data Assimilation aims at estimating the posterior conditional probability density functions based on error statistics of the noisy observations and the dynamical system. State of the art methods are sub‐optimal due to the common use of Ga
Externí odkaz:
https://doaj.org/article/64eb4547fc1a478da12b73d5e70cf5cf
Publikováno v:
Quarterly Journal of the Royal Meteorological Society. 146:4067-4082
Publikováno v:
SIAM/ASA Journal on Uncertainty Quantification
SIAM/ASA Journal on Uncertainty Quantification, ASA, American Statistical Association, 2020, 8 (1), pp.198-228. ⟨10.1137/19M1244147⟩
SIAM/ASA Journal on Uncertainty Quantification, ASA, American Statistical Association, 2020, 8 (1), pp.198-228. ⟨10.1137/19M1244147⟩
International audience; Ensemble variational methods are being increasingly used in the field of geophysical data assimilation. Their efficiency comes from the combined use of ensembles, which provide statistics estimates, and a variational analysis,
Autor:
Mayeul Destouches, Paul Mycek, Jérémy Briant, Selime Gürol, Anthony Weaver, Serge Gratton, Ehouarn Simon
In ensemble variational (EnVar) data assimilation systems, background error covariances are sampled from an ensemble of forecasts evolving with time. One possible way of generating this ensemble is by running an Ensemble of Data Assimilations (EDA) t
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::cc4052d448e034424b3fddbce56e9a3c
https://doi.org/10.5194/egusphere-egu22-336
https://doi.org/10.5194/egusphere-egu22-336
Autor:
Mathis Peyron, Anthony Fillion, Gael Goret, Serge Gratton, Selime Gürol, Pierre Boudier, Victor Marchais
Performing Data Assimilation (DA) at a low cost is of prime concern in Earth system modeling, particularly at the time of big data where huge quantities of observations are available. Capitalizing on the ability of Neural Networks techniques for appr
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::52aa02c18097b3dc147ab69cb7ba59ca
Publikováno v:
Quarterly Journal of the Royal Meteorological Society. 144:2067-2088
Publikováno v:
Gratton, S, Selime, G, Simon, E & Toint, P 2018, ' A note on preconditioning weighted linear least-squares with consequences for weakly constrained variational data assimilation ', Quarterly Journal of the Royal Meteorological Society, vol. 144, no. 712, pp. 934-940 . https://doi.org/10.1002/qj.3262
Quarterly Journal of the Royal Meteorological Society
Quarterly Journal of the Royal Meteorological Society, Wiley, 2018, 144 (712), pp.934-940. ⟨10.1002/qj.3262⟩
Quarterly Journal of the Royal Meteorological Society
Quarterly Journal of the Royal Meteorological Society, Wiley, 2018, 144 (712), pp.934-940. ⟨10.1002/qj.3262⟩
The effect of preconditioning linear weighted least-squares using an approximation of the model matrix is analyzed, showing the interplay of the eigenstructures of both the model and weighting matrices. A small example is given illustrating the resul
Autor:
Selime Gürol, Michael Fisher
Publikováno v:
Quarterly Journal of the Royal Meteorological Society. 143:1136-1147
The current evolution of computer architectures towards increasing parallelism requires a corresponding evolution towards more parallel data assimilation algorithms. In this article, we consider parallelization of weak-constraint four-dimensional var
Industrial Application of an Advanced Bi-level MDO Formulation to Aircraft Engine Pylon Optimization
Autor:
Vincent Gachelin, Stéphane Grihon, Nicolas Desfachelles, Joel Brezillon, Thierry Y. Druot, François Gallard, Rémi Lafage, Selime Gürol, Vincent Ambert, Justin Plakoo, Damien Guénot, Anne Gazaix, Maxime Hamadi, Patrick Sarouille, Benoit Pauwels, Charlie Vanaret, Nathalie Bartoli, Thierry Lefebvre
Publikováno v:
AIAA Aviation 2019 Forum.
Publikováno v:
Quarterly Journal of the Royal Meteorological Society
Quarterly Journal of the Royal Meteorological Society, Wiley, 2019, pp.1-21. ⟨10.1002/qj.3537⟩
Quarterly Journal of the Royal Meteorological Society, 2019, pp.1-21. ⟨10.1002/qj.3537⟩
Quarterly Journal of the Royal Meteorological Society, Wiley, 2019, pp.1-21. ⟨10.1002/qj.3537⟩
Quarterly Journal of the Royal Meteorological Society, 2019, pp.1-21. ⟨10.1002/qj.3537⟩
International audience; We propose a method for representing spatially correlated observation errors in variational data assimilation. The method is based on the numerical solution of a diffusion equation, a technique commonly used for representing s
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::bf1da7a78496a8eab11039fb7082154a
https://hal.archives-ouvertes.fr/hal-02160404
https://hal.archives-ouvertes.fr/hal-02160404