Zobrazeno 1 - 6
of 6
pro vyhledávání: '"Seifullin, Timur R."'
Autor:
Seifullin, Timur R.
In this article we consider the exterior power and the symmetric tensors of the polynomial ring in one variable. The structure of an associative semigraded algebra of this polynomial ring induces on the symmetric tensors the structure of an associati
Externí odkaz:
http://arxiv.org/abs/2009.01586
Autor:
Seifullin, Timur R.
Publikováno v:
Dopov. Nats. Akad. Nauk Ukr. Mat. Prirodozn. Tekh. Nauki 2000, no. 6, 26-34. MR1835215
The object of the paper is the dependence of Koszul complexes and dependence of dual Koszul complexes of two systems of non-homogeneous polynomials, when one system is a part of other system, in connection with the duality in a Koszul complex establi
Externí odkaz:
http://arxiv.org/abs/1205.0621
Autor:
Seifullin, Timur R.
Publikováno v:
Dopov. Nats. Akad. Nauk Ukr. Mat. Prirodozn. Tekh. Nauki 1997, no. 9, 43-49. MR1673647 (99m:13030)
For a system of non-homogeneous polynomials it was constructed explicit complex morphism of a dual complex to the Koszul complex into the Koszul complex. If the ideal of these polynomials is 0-dimensional, then this mapping is a homotopic equivalence
Externí odkaz:
http://arxiv.org/abs/1205.0472
Autor:
Seifullin, Timur R.
Publikováno v:
Dopov. Nats. Akad. Nauk Ukr. Mat. Prirodozn. Tekh. Nauki 2003, no. 8, 29--36. MR2046291 (2005a:13055)
It is proposed the algorithm that find a basis of the ideal and a basis of the space of all root functionals by using the extension operation for bounded root functionals, when the number of polynomials is equal to the number of variables, if it is k
Externí odkaz:
http://arxiv.org/abs/0805.4543
Autor:
Seifullin, Timur R.
Publikováno v:
Dopov. Nats. Akad. Nauk Ukr. Mat. Prirodozn. Tekh. Nauki 2003, no. 7, 19--27. MR2044325 (2004m:13069)
The notion of a root functional of polynomials is a generalization of the notion of a root for a multiple root. A root functional is a linear functional that is defined on a polynomial ring and annuls the ideal of a system of polynomials. A bounded r
Externí odkaz:
http://arxiv.org/abs/0805.4027
Autor:
Seifullin, Timur R.
Publikováno v:
Dopov. Nats. Akad. Nauk Ukr. Mat. Prirodozn. Tekh. Nauki 2002, no. 7, 35--42. MR2010106 (2004m:13028)
The notion of a root functional of a system of polynomials or ideal of polynomials is a generalization of the notion of a root, in particular, for a multiple root. A root functional is a linear functional that is defined on a polynomial ring and annu
Externí odkaz:
http://arxiv.org/abs/0804.2420