Zobrazeno 1 - 10
of 135
pro vyhledávání: '"Seidel, Raimund"'
Autor:
Cabello, Sergio, Czabarka, Éva, Fabila-Monroy, Ruy, Higashikawa, Yuya, Seidel, Raimund, Székely, László, Tkadlec, Josef, Wesolek, Alexandra
Let $S$ be a set of four points chosen independently, uniformly at random from a square. Join every pair of points of $S$ with a straight line segment. Color these edges red if they have positive slope and blue, otherwise. We show that the probabilit
Externí odkaz:
http://arxiv.org/abs/2312.01935
Autor:
Kobourov, Stephen G., Löffler, Maarten, Montecchiani, Fabrizio, Pilipczuk, Marcin, Rutter, Ignaz, Seidel, Raimund, Sorge, Manuel, Wulms, Jules
A decision tree recursively splits a feature space $\mathbb{R}^{d}$ and then assigns class labels based on the resulting partition. Decision trees have been part of the basic machine-learning toolkit for decades. A large body of work treats heuristic
Externí odkaz:
http://arxiv.org/abs/2205.07756
Autor:
Arroyo, Alan, Klute, Fabian, Parada, Irene, Seidel, Raimund, Vogtenhuber, Birgit, Wiedera, Tilo
A {\em simple drawing} $D(G)$ of a graph $G$ is one where each pair of edges share at most one point: either a common endpoint or a proper crossing. An edge $e$ in the complement of $G$ can be {\em inserted} into $D(G)$ if there exists a simple drawi
Externí odkaz:
http://arxiv.org/abs/1909.07347
We consider the problem of counting straight-edge triangulations of a given set $P$ of $n$ points in the plane. Until very recently it was not known whether the exact number of triangulations of $P$ can be computed asymptotically faster than by enume
Externí odkaz:
http://arxiv.org/abs/1404.0261
In this note we show that the maximum number of vertices in any polyhedron $P=\{x\in \mathbb{R}^d : Ax\leq b\}$ with $0,1$-constraint matrix $A$ and a real vector $b$ is at most $d!$.
Comment: 3 pages
Comment: 3 pages
Externí odkaz:
http://arxiv.org/abs/cs/0507038
Autor:
Santos, Francisco, Seidel, Raimund
Publikováno v:
J. Combin. Theory Ser. A, 102:1 (2003), 186-193
We show that a point set of cardinality $n$ in the plane cannot be the vertex set of more than $59^n O(n^{-6})$ straight-edge triangulations of its convex hull. This improves the previous upper bound of $276.75^n$.
Comment: 6 pages, 1 figure
Comment: 6 pages, 1 figure
Externí odkaz:
http://arxiv.org/abs/math/0204045
Publikováno v:
In Computer-Aided Design January 2016 70:46-55
Publikováno v:
In Computational Geometry: Theory and Applications July 2015 48(5):386-397
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
In Computational Geometry: Theory and Applications August 2013 46(6):615-630