Zobrazeno 1 - 10
of 44
pro vyhledávání: '"Sei-Qwon Oh"'
Publikováno v:
Communications in Algebra. 50:3156-3163
Autor:
Hanna Sim, Sei-Qwon Oh
Publikováno v:
Archiv der Mathematik. 118:133-142
Let A be a Poisson algebra over a field $$\mathbf{k}$$ with characteristic zero, let $$\gamma $$ , $$\alpha $$ be Poisson derivations on A such that $$\gamma \alpha =\alpha \gamma $$ and $$0\ne \rho \in \mathbf{k}$$ . Here the notion of a $$\gamma $$
Publikováno v:
Communications in Algebra. 49:5462-5471
Let R be an affine Poisson algebra over a field of characteristic zero and let A be a Poisson order over R. It is proved that every Poisson primitive ideal of A is annihilator of a simple Poisson A-module.
Publikováno v:
Proceedings of the American Mathematical Society. 146:4619-4631
Publikováno v:
Communications in Algebra. 46:4891-4904
It is proved that the Poisson enveloping algebra of a double Poisson-Ore extension is an iterated double Ore extension. As an application, properties that are preserved under iterated double Ore extensions are invariants of the Poisson enveloping alg
Autor:
Sei-Qwon Oh
Publikováno v:
Communications in Algebra. 45:5088-5091
Let $\widehat{\Gamma}$ be the natural map given in \cite[\S1]{Oh12}. Here, we construct a deformation $B_q$ of a Poisson algebra $B_1$ and a prime ideal $P$ of $B_q$ such that $\widehat{\Gamma}(P)$ is not a Poisson prime ideal of $B_1$.
Comment:
Comment:
Autor:
Sei-Qwon Oh
Publikováno v:
Communications in Algebra. 45:60-75
A natural map from a quantized space onto its semiclassical limit is obtained. As an application, we see that an induced map by the natural map is a homeomorphism from the spectrum of the multi-parameter quantized Weyl algebra onto the Poisson spectr
Autor:
Sei-Qwon Oh
Publikováno v:
Communications in Algebra. 45:76-104
A Poisson algebra ℂ[G] considered as a Poisson version of the twisted quantized coordinate ring ℂq,p[G], constructed by Hodges et al. [11], is obtained and its Poisson structure is investigated. Th...
Autor:
Eun-Hee Cho, Sei-Qwon Oh
Publikováno v:
Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry. 58:227-234
Let \(\mathfrak {g}\) be the finite dimensional simple Lie algebra associated to an indecomposable and symmetrizable generalized Cartan matrix \(C=(a_{ij})_{n\times n}\) of finite type and let \(\mathfrak {d}\) be a finite dimensional Lie algebra rel
Autor:
Hanna Sim, Sei-Qwon Oh
Publikováno v:
Journal of the Chungcheong Mathematical Society. 28:307-310
【Let H be a color Poisson bialgebra. Here we find a canonical nondegenerate bilinear form $\mathfrak{g}(H){\times}\mathfrak{m/m^2}$ , where $\mathfrak{g}(H)$ and $\mathfrak{m/m^2}$ are certain color Lie algebras induced by H.】