Zobrazeno 1 - 10
of 106
pro vyhledávání: '"Seguin, Brian"'
Autor:
Paroni, Roberto, Seguin, Brian
In this work we address the following question: is it possible for a one-dimensional, linearly elastic beam to only bend on the Cantor set and, if so, what would the bending energy of such a beam look like? We answer this question by considering a se
Externí odkaz:
http://arxiv.org/abs/2404.04463
Autor:
Mihaila, Cornelia, Seguin, Brian
Here we introduce a fractional notion of $k$-dimensional measure, $0\leq k
Externí odkaz:
http://arxiv.org/abs/2303.11542
In the literature various notions of nonlocal curvature can be found. Here we propose a notion of nonlocal curvature tensor. This we do by generalizing an appropriate representation of the classical curvature tensor and by exploiting some analogies w
Externí odkaz:
http://arxiv.org/abs/2211.00552
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Seguin, Brian
Here a new notion of fractional length of a smooth curve, which depends on a parameter $\sigma$, is introduced that is analogous to the fractional perimeter functional of sets that has been studied in recent years. It is shown that in an appropriate
Externí odkaz:
http://arxiv.org/abs/1808.08654
Autor:
Seguin, Brian
Most transport theorems---that is, a formula for the rate of change of an integral in which both the integrand and domain of integration depend on time---involve domains that evolve according to a flow map. Such domains are said to be convecting. Her
Externí odkaz:
http://arxiv.org/abs/1808.08175
Autor:
Seguin, Brian, Fried, Eliot
Publikováno v:
In Mechanics of Materials March 2022 166
For surfaces without boundary, nonlocal notions of directional and mean curvatures have been recently given. Here, we develop alternative notions, special cases of which apply to surfaces with boundary. Our main tool is a new fractional or nonlocal a
Externí odkaz:
http://arxiv.org/abs/1701.06513
Autor:
Seguin, Brian
Many biological and engineering materials have nonperiodic microstructures for which classical periodic homogenization results do not apply. Certain nonperiodic microstructures may be approximated by locally periodic microstructures for which homogen
Externí odkaz:
http://arxiv.org/abs/1606.03404
Autor:
Ptashnyk, Mariya, Seguin, Brian
The microscopic structure of a plant cell wall is given by cellulose microfibrils embedded in a cell wall matrix. In this paper we consider a microscopic model for interactions between viscoelastic deformations of a plant cell wall and chemical proce
Externí odkaz:
http://arxiv.org/abs/1512.09268