Zobrazeno 1 - 10
of 204
pro vyhledávání: '"Segovia, Carlos"'
We present the unoriented version of the Schur and Bogomolov multiplier associated with a finite group $G$. We show that the unoriented Schur multiplier is isomorphic to the second cohomology group $H^2(G;\mathbb{Z}_2)$. We define the unoriented Bogo
Externí odkaz:
http://arxiv.org/abs/2307.05863
Autor:
Segovia, Carlos
Publikováno v:
Pro Mathematica; Vol. 8, Núm. 15-16 (1994); 145-174
l. Introduction In these notes we shall present results concerning LP inequalities with different but related weights for commutators of singular and strongly singular integrals. These commutators turn out to be controlled by commutator of fractional
Autor:
Segovia, Carlos
This work provides a geometric version of the next-generation method for obtaining the basic reproduction number of an epidemiological model. More precisely, we generalize the concept of the basic reproduction number for the theory of Petri nets. The
Externí odkaz:
http://arxiv.org/abs/2206.03269
Autor:
Capri, Osvaldo N., Segovia, Carlos
Publikováno v:
Pro Mathematica; Vol. 3, Núm. 5-6 (1989); 3-29
Externí odkaz:
http://revistas.pucp.edu.pe/index.php/promathematica/article/view/6060/6066
http://repositorio.pucp.edu.pe/index/handle/123456789/97142
http://repositorio.pucp.edu.pe/index/handle/123456789/97142
Autor:
Villacis-Segovia, Carlos, Del Olmo, Rafael, Olmedo Martínez, Jorge L., ÓDell, Luke A., Fernández, Mercedes, Mecerreyes, David, Kvasha, Andriy, Villaluenga, Irune
Publikováno v:
In Chemical Engineering Journal 15 November 2024 500
Publikováno v:
Algebr. Geom. Topol. 24 (2024) 1623-1654
Fix a finite group $G$. We study $\Omega^{SO,G}_2$ and $\Omega^{U,G}_2$, the unitary and oriented bordism groups of smooth $G$-equivariant compact surfaces, respectively, and we calculate them explicitly. Their ranks are determined by the possible re
Externí odkaz:
http://arxiv.org/abs/2111.02693
The present paper deals with integral classes $\xi_p\in H_{2p+1}(L^{2p+1}\times L^{2p+1})$ which are counterexamples for the Steenrod realization problem, where $L^{2p+1}$ is the $(2p+1)$-dimensional lens space and $p\geq 3$ is a prime number. For $p
Externí odkaz:
http://arxiv.org/abs/2105.01806