Zobrazeno 1 - 10
of 48
pro vyhledávání: '"Seesanea, A."'
Autor:
May, Aye Chan, Seesanea, Adisak
We give a constructive approach for the study of integral representations of classical solutions to Poisson equations under some integrability conditions on data functions.
Comment: 17
Comment: 17
Externí odkaz:
http://arxiv.org/abs/2401.04329
We extend the Calder\'on-Zygmund theory for nonlocal equations to strongly coupled system of linear nonlocal equations $\mathcal{L}^{s}_{A} u = f$, where the operator $\mathcal{L}^{s}_{A}$ is formally given by \[ \mathcal{L}^s_{A}u = \int_{\mathbb{R}
Externí odkaz:
http://arxiv.org/abs/2401.01886
Autor:
May, Aye Chan, Seesanea, Adisak
We study Dirichlet problems for fractional Laplace equations of the form $(-\Delta)^{\frac{\alpha}{2}} u = f(x,u)$ in $\mathbb{R}^{n}$ for $0<\alpha
Externí odkaz:
http://arxiv.org/abs/2310.12576
Autor:
May, Aye Chan, Seesanea, Adisak
Publikováno v:
Results in Applied Mathematics, Volume 21 (2024), 100421
We solve the existence problem for the minimal positive solutions $u\in L^{p}(\Omega, dx)$ to the Dirichlet problems for sublinear elliptic equations of the form \[ \begin{cases} Lu=\sigma u^q+\mu\qquad \quad \text{in} \quad \Omega, \\ \liminf\limits
Externí odkaz:
http://arxiv.org/abs/2310.11352
Autor:
Seesanea, Adisak, Uemura, Toshihiro
This work is concerned with homogenization problems for elliptic equations of the type \[ \begin{cases} \mathfrak{L}_{\delta} u_{\delta} + \lambda u_{\delta} = f_{\delta} \qquad \text{in} \;\; D, \\ \qquad \quad \;\, u = 0 \qquad \, \text{on} \;\; \p
Externí odkaz:
http://arxiv.org/abs/2306.14307
We discuss tangential Sobolev-estimates up to the boundary for solutions to the regional fractional laplacian on the upper half-plane. These estimates can be used to reduce the boundary Calderon-Zygmund theory of any dimension to a one-dimensional no
Externí odkaz:
http://arxiv.org/abs/2209.07939
Autor:
May, Aye Chan, Seesanea, Adisak
Publikováno v:
In Results in Applied Mathematics February 2024 21
Autor:
Aye Chan May, Adisak Seesanea
Publikováno v:
Results in Applied Mathematics, Vol 21, Iss , Pp 100421- (2024)
We solve the existence problem for the minimal positive solutions u∈Lp(Ω,dx) to the Dirichlet problems for sublinear elliptic equations of the form Lu=σuq+μinΩ,lim infx→yu(x)=0y∈∂∞Ω,where 0
Externí odkaz:
https://doaj.org/article/a6c42d7aac9d41ce89c24b10cce5cc3b
Autor:
Hirata, Kentaro, Seesanea, Adisak
We present a necessary and sufficient condition on nonnegative Radon measures $\mu$ and $\nu$ for the existence of a positive continuous solution of the Dirichlet problem for the sublinear elliptic equation $-\Delta u=\mu u^q+\nu$ with prescribed non
Externí odkaz:
http://arxiv.org/abs/2009.06939
Autor:
Hara, Takanobu, Seesanea, Adisak
We study the existence of positive solutions to quasilinear elliptic equations of the type \[ -\Delta_{p} u = \sigma u^{q} + \mu \quad \text{in} \ \mathbb{R}^{n}, \] in the sub-natural growth case $0 < q < p - 1$, where $\Delta_{p}u = \nabla \cdot (
Externí odkaz:
http://arxiv.org/abs/2003.11186