Zobrazeno 1 - 10
of 18
pro vyhledávání: '"See, Abigail"'
Autor:
Tanno, Ryutaro, Barrett, David G. T., Sellergren, Andrew, Ghaisas, Sumedh, Dathathri, Sumanth, See, Abigail, Welbl, Johannes, Singhal, Karan, Azizi, Shekoofeh, Tu, Tao, Schaekermann, Mike, May, Rhys, Lee, Roy, Man, SiWai, Ahmed, Zahra, Mahdavi, Sara, Matias, Yossi, Barral, Joelle, Eslami, Ali, Belgrave, Danielle, Natarajan, Vivek, Shetty, Shravya, Kohli, Pushmeet, Huang, Po-Sen, Karthikesalingam, Alan, Ktena, Ira
Radiology reports are an instrumental part of modern medicine, informing key clinical decisions such as diagnosis and treatment. The worldwide shortage of radiologists, however, restricts access to expert care and imposes heavy workloads, contributin
Externí odkaz:
http://arxiv.org/abs/2311.18260
Autor:
Glaese, Amelia, McAleese, Nat, Trębacz, Maja, Aslanides, John, Firoiu, Vlad, Ewalds, Timo, Rauh, Maribeth, Weidinger, Laura, Chadwick, Martin, Thacker, Phoebe, Campbell-Gillingham, Lucy, Uesato, Jonathan, Huang, Po-Sen, Comanescu, Ramona, Yang, Fan, See, Abigail, Dathathri, Sumanth, Greig, Rory, Chen, Charlie, Fritz, Doug, Elias, Jaume Sanchez, Green, Richard, Mokrá, Soňa, Fernando, Nicholas, Wu, Boxi, Foley, Rachel, Young, Susannah, Gabriel, Iason, Isaac, William, Mellor, John, Hassabis, Demis, Kavukcuoglu, Koray, Hendricks, Lisa Anne, Irving, Geoffrey
We present Sparrow, an information-seeking dialogue agent trained to be more helpful, correct, and harmless compared to prompted language model baselines. We use reinforcement learning from human feedback to train our models with two new additions to
Externí odkaz:
http://arxiv.org/abs/2209.14375
Autor:
Chi, Ethan A., Paranjape, Ashwin, See, Abigail, Chiam, Caleb, Chang, Trenton, Kenealy, Kathleen, Lim, Swee Kiat, Hardy, Amelia, Rastogi, Chetanya, Li, Haojun, Iyabor, Alexander, He, Yutong, Sowrirajan, Hari, Qi, Peng, Sadagopan, Kaushik Ram, Phu, Nguyet Minh, Soylu, Dilara, Tang, Jillian, Narayan, Avanika, Campagna, Giovanni, Manning, Christopher D.
We present Chirpy Cardinal, an open-domain social chatbot. Aiming to be both informative and conversational, our bot chats with users in an authentic, emotionally intelligent way. By integrating controlled neural generation with scaffolded, hand-writ
Externí odkaz:
http://arxiv.org/abs/2207.12021
Autor:
Paranjape, Ashwin, See, Abigail, Kenealy, Kathleen, Li, Haojun, Hardy, Amelia, Qi, Peng, Sadagopan, Kaushik Ram, Phu, Nguyet Minh, Soylu, Dilara, Manning, Christopher D.
We present Chirpy Cardinal, an open-domain dialogue agent, as a research platform for the 2019 Alexa Prize competition. Building an open-domain socialbot that talks to real people is challenging - such a system must meet multiple user expectations su
Externí odkaz:
http://arxiv.org/abs/2008.12348
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Large neural language models trained on massive amounts of text have emerged as a formidable strategy for Natural Language Understanding tasks. However, the strength of these models as Natural Language Generators is less clear. Though anecdotal evide
Externí odkaz:
http://arxiv.org/abs/1909.10705
A good conversation requires balance -- between simplicity and detail; staying on topic and changing it; asking questions and answering them. Although dialogue agents are commonly evaluated via human judgments of overall quality, the relationship bet
Externí odkaz:
http://arxiv.org/abs/1902.08654
Neural sequence-to-sequence models have provided a viable new approach for abstractive text summarization (meaning they are not restricted to simply selecting and rearranging passages from the original text). However, these models have two shortcomin
Externí odkaz:
http://arxiv.org/abs/1704.04368
Neural Machine Translation (NMT), like many other deep learning domains, typically suffers from over-parameterization, resulting in large storage sizes. This paper examines three simple magnitude-based pruning schemes to compress NMT models, namely c
Externí odkaz:
http://arxiv.org/abs/1606.09274
Autor:
Tanno, Ryutaro, Barrett, David G. T., Sellergren, Andrew, Ghaisas, Sumedh, Dathathri, Sumanth, See, Abigail, Welbl, Johannes, Lau, Charles, Tu, Tao, Azizi, Shekoofeh, Singhal, Karan, Schaekermann, Mike, May, Rhys, Lee, Roy, Man, SiWai, Mahdavi, Sara, Ahmed, Zahra, Matias, Yossi, Barral, Joelle, Eslami, S. M. Ali, Belgrave, Danielle, Liu, Yun, Kalidindi, Sreenivasa Raju, Shetty, Shravya, Natarajan, Vivek, Kohli, Pushmeet, Huang, Po-Sen, Karthikesalingam, Alan, Ktena, Ira
Publikováno v:
Nature Medicine; 20240101, Issue: Preprints p1-10, 10p