Zobrazeno 1 - 8
of 8
pro vyhledávání: '"Secondary 35K45"'
Autor:
Auscher, Pascal, Baadi, Khalid
In this paper, we develop a universal, conceptually simple and systematic method to prove well-posedness to Cauchy problems for weak solutions of parabolic equations with non-smooth, time-dependent, elliptic part having a variational definition. Our
Externí odkaz:
http://arxiv.org/abs/2412.18436
Autor:
Kouachi, Said
In this work we prove global existence and uniform boundedness of solutions of 2X2 reaction-diffusion systems with control of mass structure and nonlinearities of unlimited growth. Furthermore the results are obtained without restrictions on diffusio
Externí odkaz:
http://arxiv.org/abs/2301.07708
Autor:
Chen, Gui-Qiang G., Qian, Zhongmin
We develop a new approach for regularity estimates, especially vorticity estimates, of solutions of the three-dimensional Navier-Stokes equations with periodic initial data, by exploiting carefully formulated linearized vorticity equations. An appeal
Externí odkaz:
http://arxiv.org/abs/2210.04129
Autor:
Addona, Davide, Lorenzi, Luca
We prove maximal Schauder regularity for solutions to elliptic systems and Cauchy problems, in the space $C_b(\mathbb{R}^d;\mathbb{R}^m)$ of bounded and continuous functions, associated to a class of nonautonomous weakly coupled second-order elliptic
Externí odkaz:
http://arxiv.org/abs/2112.14999
Autor:
Plazotta, Simon, Zinsl, Jonathan
Publikováno v:
Journal of Differential Equations 261 (2016), pp. 6806-6855
We study the high-frequency limit of non-autonomous gradient flows in metric spaces of energy functionals comprising an explicitly time-dependent perturbation term which might oscillate in a rapid way, but fulfills a certain Lipschitz condition. On g
Externí odkaz:
http://arxiv.org/abs/1601.04445
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Kim, Kyeong-Hun, Lee, Kijung
In this article we present a $W^n_2$-theory of stochastic parabolic partial differential systems. In particular, we focus on non-divergent type. The space domains we consider are $\bR^d$, $\bR^d_+$ and eventually general bounded $C^1$-domains $\mathc
Externí odkaz:
http://arxiv.org/abs/1103.0830
Autor:
Meshkova, Yulia
Publikováno v:
Journal of Evolution Equations
In \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_2({\mathbb {R}}