Zobrazeno 1 - 10
of 445
pro vyhledávání: '"Second order parabolic systems"'
Autor:
Baderko, E. A.1,2 (AUTHOR) baderko.ea@yandex.ru, Fedorov, K. D.1,2 (AUTHOR) konstantin-dubna@mail.ru
Publikováno v:
Differential Equations. Dec2023, Vol. 59 Issue 12, p1613-1626. 14p.
Autor:
DONG, HONGJIE, KIM, SEICK
Publikováno v:
Proceedings of the American Mathematical Society, 2018 Jul 01. 146(7), 3019-3029.
Externí odkaz:
https://www.jstor.org/stable/90021384
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Dong, Hongjie, Kim, Seick
Publikováno v:
Proceedings of the American Mathematical Society Vol. 146 (2018), No. 7, pp. 3019-3029
We construct fundamental solutions of second-order parabolic systems of divergence form with bounded and measurable leading coefficients and divergence free first-order coefficients in the class of $BMO^{-1}_x$, under the assumption that weak solutio
Externí odkaz:
http://arxiv.org/abs/1707.09162
Autor:
Niu, Weisheng, Xu, Yao
Publikováno v:
In Journal of Differential Equations 5 June 2019 266(12):8294-8319
Autor:
Sakharov, S. I.1,2 (AUTHOR) ser341516@yandex.ru
Publikováno v:
Differential Equations. Apr2021, Vol. 57 Issue 4, p476-487. 12p.
Autor:
Choi, Jongkeun, Kim, Seick
Publikováno v:
Journal of Differential Equations 254 (2013), no. 7, pp.2834-2860
We study the Neumann Green's function for second order parabolic systems in divergence form with time-dependent measurable coefficients in a cylindrical domain $\mathcal{Q}=\Omega\times (-\infty,\infty)$, where $\Omega\subset \mathbb{R}^n$ is an open
Externí odkaz:
http://arxiv.org/abs/1301.1537
Publikováno v:
Potential Analysis 36 (2012), no. 2, pp.339-372
We establish global Gaussian estimates for the Green's matrix of divergence form, second order parabolic systems in a cylindrical domain under the assumption that weak solutions of the system vanishing on a portion of the boundary satisfy a certain l
Externí odkaz:
http://arxiv.org/abs/1007.5429
Autor:
Kim, Seick
Publikováno v:
Trans. Amer. Math. Soc. 360 (2008), 6031-6043.
Auscher, McIntosh and Tchamitchian studied the heat kernels of second order elliptic operators in divergence form with complex bounded measurable coefficients on $\mathbb{R}^n$. In particular, in the case when $n=2$ they obtained Gaussian upper bound
Externí odkaz:
http://arxiv.org/abs/0704.1372
Autor:
Kim, Seick
Publikováno v:
Transactions of the American Mathematical Society, 2008 Nov 01. 360(11), 6031-6043.
Externí odkaz:
http://dx.doi.org/10.1090/S0002-9947-08-04485-1