Zobrazeno 1 - 10
of 169
pro vyhledávání: '"Secchi, Paolo"'
Autor:
Secchi, Paolo
We consider the initial-boundary value problem in the quarter space for the system of equations of ideal Magneto-Hydrodynamics for compressible fluids with perfectly conducting wall boundary conditions. On the two parts of the boundary the solution s
Externí odkaz:
http://arxiv.org/abs/2411.09352
Autor:
Secchi, Paolo
Publikováno v:
Commun. Math. Anal. Appl., 3 (2024), pp. 168-198
We consider the initial-boundary value problem in the halfspace for the system of equations of ideal Magneto-Hydrodynamics with a perfectly conducting wall boundary condition. We show the convergence of solutions to the solution of the equations of i
Externí odkaz:
http://arxiv.org/abs/2406.11425
We are concerned with nonlinear stability and existence of two-dimensional current-vortex sheets in ideal compressible magnetohydrodynamics. This is a nonlinear hyperbolic initial-boundary value problem with characteristic free boundary. It is well-k
Externí odkaz:
http://arxiv.org/abs/2305.02784
Autor:
Secchi, Paolo, Yuan, Yuan
We consider the free boundary problem for a plasma--vacuum interface in ideal incompressible magnetohydrodynamics. Unlike the classical statement, where the vacuum magnetic field obeys the div-curl system of pre-Maxwell dynamics, we do not neglect th
Externí odkaz:
http://arxiv.org/abs/2202.07842
Autor:
Secchi, Paolo
We are concerned with supersonic vortex sheets for the Euler equations of compressible inviscid fluids in two space dimensions. For the problem with constant coefficients, in [10] the authors have derived a pseudo-differential equation which describe
Externí odkaz:
http://arxiv.org/abs/2008.05956
Publikováno v:
Archive for Rational Mechanics and Analysis 237 (2020), no. 3, 1271--1323
We study the system of nonisentropic thermoelasticity describing the motion of thermoelastic nonconductors of heat in two and three spatial dimensions, where the frame-indifferent constitutive relation generalizes that for compressible neo-Hookean ma
Externí odkaz:
http://arxiv.org/abs/1912.13343
We study the free boundary problem for a plasma-vacuum interface in ideal incompressible magnetohydrodynamics. Unlike the classical statement when the vacuum magnetic field obeys the div-curl system of pre-Maxwell dynamics, to better understand the i
Externí odkaz:
http://arxiv.org/abs/1911.02327
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
We are concerned with supersonic vortex sheets for the Euler equations of compressible inviscid fluids in two space dimensions. For the problem with constant coefficients we derive an evolution equation for the discontinuity front of the vortex sheet
Externí odkaz:
http://arxiv.org/abs/1806.06740
Publikováno v:
Archive for Rational Mechanics and Analysis 232 (2019), no. 2, 591--695
We are concerned with the nonlinear stability of vortex sheets for the relativistic Euler equations in three-dimensional Minkowski spacetime. This is a nonlinear hyperbolic problem with a characteristic free boundary. In this paper, we introduce a ne
Externí odkaz:
http://arxiv.org/abs/1707.02672