Zobrazeno 1 - 8
of 8
pro vyhledávání: '"Sebbouh, Othmane"'
Matching a source to a target probability measure is often solved by instantiating a linear optimal transport (OT) problem, parameterized by a ground cost function that quantifies discrepancy between points. When these measures live in the same metri
Externí odkaz:
http://arxiv.org/abs/2311.05788
An increasing number of machine learning problems, such as robust or adversarial variants of existing algorithms, require minimizing a loss function that is itself defined as a maximum. Carrying a loop of stochastic gradient ascent (SGA) steps on the
Externí odkaz:
http://arxiv.org/abs/2111.13162
We present a unified theorem for the convergence analysis of stochastic gradient algorithms for minimizing a smooth and convex loss plus a convex regularizer. We do this by extending the unified analysis of Gorbunov, Hanzely \& Richt\'arik (2020) and
Externí odkaz:
http://arxiv.org/abs/2006.11573
Stochastic Gradient Descent (SGD) is being used routinely for optimizing non-convex functions. Yet, the standard convergence theory for SGD in the smooth non-convex setting gives a slow sublinear convergence to a stationary point. In this work, we pr
Externí odkaz:
http://arxiv.org/abs/2006.10311
We study stochastic gradient descent (SGD) and the stochastic heavy ball method (SHB, otherwise known as the momentum method) for the general stochastic approximation problem. For SGD, in the convex and smooth setting, we provide the first \emph{almo
Externí odkaz:
http://arxiv.org/abs/2006.07867
Among the very first variance reduced stochastic methods for solving the empirical risk minimization problem was the SVRG method (Johnson & Zhang 2013). SVRG is an inner-outer loop based method, where in the outer loop a reference full gradient is ev
Externí odkaz:
http://arxiv.org/abs/1908.02725
In this article a family of second order ODEs associated to inertial gradient descend is studied. These ODEs are widely used to build trajectories converging to a minimizer $x^*$ of a function $F$, possibly convex. This family includes the continuous
Externí odkaz:
http://arxiv.org/abs/1907.02710
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.