Zobrazeno 1 - 10
of 13
pro vyhledávání: '"Sebastian Jaskiewicz"'
Publikováno v:
Journal of High Energy Physics, Vol 2023, Iss 12, Pp 1-42 (2023)
Abstract We present a factorization theorem of the partonic Drell-Yan off-diagonal processes g q ¯ qg → γ ∗ + X $$ g\overline{q}(qg)\to {\gamma}^{\ast }+X $$ in the kinematic threshold regime z = Q 2 / s ̂ → 1 $$ z={Q}^2/\hat{s}\to 1 $$ at g
Externí odkaz:
https://doaj.org/article/f8876ec5ba2b441eaff421cc313ee7b7
Publikováno v:
Journal of High Energy Physics, Vol 2021, Iss 10, Pp 1-31 (2021)
Abstract We calculate the generalized soft functions at O $$ \mathcal{O} $$ ( α s 2 $$ {\alpha}_s^2 $$ ) at next-to-leading power accuracy for the Drell-Yan process at threshold. The operator definitions of these objects contain explicit insertions
Externí odkaz:
https://doaj.org/article/d89286505fea4f1eb7fef9d4b082f73f
Autor:
Martin Beneke, Mathias Garny, Sebastian Jaskiewicz, Robert Szafron, Leonardo Vernazza, Jian Wang
Publikováno v:
Journal of High Energy Physics, Vol 2020, Iss 10, Pp 1-49 (2020)
Abstract The off-diagonal parton-scattering channels g + γ * and q + ϕ * in deep-inelastic scattering are power-suppressed near threshold x → 1. We address the next-to-leading power (NLP) resummation of large double logarithms of 1 − x to all o
Externí odkaz:
https://doaj.org/article/b6b353c78ad84ac290a520d3a752d877
Publikováno v:
Journal of High Energy Physics, Vol 2020, Iss 7, Pp 1-51 (2020)
Abstract We present a factorization theorem valid near the kinematic threshold z = Q 2 / s ̂ → 1 $$ z={Q}^2/\hat{s}\to 1 $$ of the partonic Drell-Yan process q q ¯ → γ ∗ + X $$ q\overline{q}\to {\gamma}^{\ast }+X $$ for general subleading po
Externí odkaz:
https://doaj.org/article/deb52532b09f46cbb421f2cc6e455f95
Autor:
Martin Beneke, Mathias Garny, Sebastian Jaskiewicz, Robert Szafron, Leonardo Vernazza, Jian Wang
Publikováno v:
Journal of High Energy Physics, Vol 2020, Iss 1, Pp 1-18 (2020)
Abstract We sum the leading logarithms α s n ln 2 n − 1 1 − z $$ {\alpha}_s^n{\ln}^{2n-1}\left(1-z\right) $$ , n = 1, 2, . . . , near the kinematic threshold z = m H 2 / s ̂ → 1 $$ z={m}_H^2/\hat{s}\to 1 $$ at next-to-leading power in the exp
Externí odkaz:
https://doaj.org/article/40c26f5f0b3746178e6368eace3f2fb6
Autor:
Martin Beneke, Alessandro Broggio, Mathias Garny, Sebastian Jaskiewicz, Robert Szafron, Leonardo Vernazza, Jian Wang
Publikováno v:
Journal of High Energy Physics, Vol 2019, Iss 3, Pp 1-39 (2019)
Abstract We resum the leading logarithms α s n ln2n − 1(1 − z), n = 1, 2, . . . near the kine-matic threshold z = Q 2/ŝ → 1 of the Drell-Yan process at next-to-leading power in the expansion in (1 − z). The derivation of this result employs
Externí odkaz:
https://doaj.org/article/d9ab6df246ea4eeba725196acd735486
Autor:
Martin Beneke, Mathias Garny, Sebastian Jaskiewicz, Julian Strohm, Robert Szafron, Leonardo Vernazza, Jian Wang
Endpoint divergences in the convolution integrals appearing in next-to-leading-power factorization theorems prevent a straightforward application of standard methods to resum large logarithmic power-suppressed corrections in collider physics. We stud
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d23cc39041dd4998b2216020488deae1
http://arxiv.org/abs/2207.14199
http://arxiv.org/abs/2207.14199
Publikováno v:
INSPIRE-HEP
We present a method of merging the exclusive LO-matched high energy resummation of High Energy Jets (HEJ) with the parton shower of Pythia which preserves the accuracy of the LO cross sections and the logarithmic accuracy of both resummation schemes
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::0e16f0f6588c63568a02aceea242bd02
Autor:
Jian Wang, Mathias Garny, Leonardo Vernazza, Robert Szafron, Martin Beneke, Sebastian Jaskiewicz
Publikováno v:
Journal of High Energy Physics
Journal of High Energy Physics, Vol 2020, Iss 10, Pp 1-49 (2020)
Journal of High Energy Physics, Vol 2020, Iss 10, Pp 1-49 (2020)
The off-diagonal parton-scattering channels $g+\gamma^*$ and $q+\phi^*$ in deep-inelastic scattering are power-suppressed near threshold $x\to 1$. We address the next-to-leading power (NLP) resummation of large double logarithms of $1-x$ to all order
Autor:
Sebastian Jaskiewicz
We present the next-to-leading power (NLP) factorization formula for the $q\bar{q}\to \gamma^*+X$ channel of the Drell-Yan production near the kinematic threshold limit. The formalism used for the computation of next-to-leading power corrections with
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d64dcdb6d988247cd88dc92f019743ce
http://arxiv.org/abs/1912.08882
http://arxiv.org/abs/1912.08882