Zobrazeno 1 - 10
of 13
pro vyhledávání: '"Sebastian Heintze"'
Publikováno v:
Agriculture, Vol 14, Iss 6, p 928 (2024)
Organic residues, as a nutrient source suitable of producing solutions for hydroponic crop production, have the potential to reduce the dependence on mineral fertilizers. Especially in remote and resource-constrained regions, organic residues might b
Externí odkaz:
https://doaj.org/article/ffc244757be949e8962287ce76b64dd3
Publikováno v:
Mathematics of Computation.
Let ( U n ) n ∈ N (U_n)_{n\in \mathbb {N}} be a fixed linear recurrence sequence defined over the integers (with some technical restrictions). We prove that there exist effectively computable constants B B and N 0 N_0 such that for any b , c ∈ Z
Autor:
Sebastian Heintze, Clemens Fuchs
Publikováno v:
Indagationes Mathematicae. 32:691-703
Let $ K $ be a number field, $ S $ a finite set of places of $ K $, and $ \mathcal{O}_S $ be the ring of $ S $-integers. Moreover, let $$ G_n^{(0)} Z^d + \cdots + G_n^{(d-1)} Z + G_n^{(d)} $$ be a polynomial in $ Z $ having simple linear recurrences
Autor:
Clemens Fuchs, Sebastian Heintze
Publikováno v:
Acta Arithmetica. 198:427-438
We are interested in solutions of a norm form equation that takes values in a given multi-recurrence. We show that among the solutions there are only finitely many values in each component which lie in the given multi-recurrence unless the recurrence
Autor:
Sebastian Heintze, Clemens Fuchs
Publikováno v:
Proceedings of the American Mathematical Society. 149:27-35
We show that there are only finitely many triples of integers 0 > a > b > c 0 > a > b > c such that the product of any two of them is the value of a given polynomial with integer coefficients evaluated at an S S -unit that is also a positive integer.
Autor:
Clemens Fuchs, Sebastian Heintze
In this paper we provide a complete proof for a bound on the growth of multi-recurrences which are defined over a number field. The proven bound was already stated by van der Poorten and Schlickewei forty years ago.
Comment: 5 pages
Comment: 5 pages
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::05008d2290ba0adc7b81eb0777f771b8
Autor:
Sebastian Heintze
In this paper we consider a simple linear recurrence sequence $ G_n $ defined over a function field in one variable over the field of complex numbers. We prove an upper bound on the indices $ n $ and $ m $ such that $ G_n + G_m $ is an $ S $-unit. Th
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::ab5b3dd1794b0452a5e34ba5df7106ec
http://arxiv.org/abs/2111.05085
http://arxiv.org/abs/2111.05085
Autor:
Clemens Fuchs, Sebastian Heintze
Publikováno v:
Periodica Mathematica Hungarica. 86:300-300
Autor:
Sebastian Heintze, Clemens Fuchs
In this paper, we consider a variant of Pillai's problem over function fields $ F $ in one variable over $ \mathbb{C} $. For given simple linear recurrence sequences $ G_n $ and $ H_m $, defined over $ F $ and satisfying some weak conditions, we will
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::8fef180882aa20d342092e8f7c55d1ac
http://arxiv.org/abs/2008.10339
http://arxiv.org/abs/2008.10339
Autor:
Clemens Fuchs, Sebastian Heintze
Publikováno v:
Monatshefte Fur Mathematik
We consider Diophantine equations of the shape $ f(x) = g(y) $, where the polynomials $ f $ and $ g $ are elements of power sums. Using a finiteness criterion of Bilu and Tichy, we will prove that under suitable assumptions infinitely many rational s
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::8e1b248c71a0e8e77cd3f866a2f45a4b
http://arxiv.org/abs/2008.10342
http://arxiv.org/abs/2008.10342