Zobrazeno 1 - 3
of 3
pro vyhledávání: '"Sebastian Bechtel"'
Autor:
Sebastian Bechtel
This book establishes a comprehensive theory to treat square roots of elliptic systems incorporating mixed boundary conditions under minimal geometric assumptions. To lay the groundwork, the text begins by introducing the geometry of locally uniform
Autor:
Moritz Egert, Sebastian Bechtel
Publikováno v:
Journal of Fourier Analysis and Applications
Journal of Fourier Analysis and Applications, Springer Verlag, 2019, 25 (5), pp.2733-2781. ⟨10.1007/s00041-019-09681-1⟩
Journal of Fourier Analysis and Applications, Springer Verlag, 2019, 25 (5), pp.2733-2781. ⟨10.1007/s00041-019-09681-1⟩
A full interpolation theory for Sobolev functions with smoothness between 0 and 1 and vanishing trace on a part of the boundary of an open set is established. Geometric assumptions are of mostly measure theoretic nature and reach beyond Lipschitz reg
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::9109b19ff8f389018ecb0727ee3051df
https://hal.archives-ouvertes.fr/hal-01830708v3/file/Interpolation.pdf
https://hal.archives-ouvertes.fr/hal-01830708v3/file/Interpolation.pdf
Publikováno v:
Advances in Mathematics
Advances in Mathematics, Elsevier, 2020, 375, pp.107410. ⟨10.1016/j.aim.2020.107410⟩
Advances in Mathematics, Elsevier, 2020, 375, pp.107410. ⟨10.1016/j.aim.2020.107410⟩
We obtain the Kato square root estimate for second order elliptic operators in divergence form with mixed boundary conditions on an open and possibly unbounded set in $\mathbb{R}^d$ under two simple geometric conditions: The Dirichlet boundary part i
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::8a3b5a73b390f44ece2f44241933f38f