Zobrazeno 1 - 6
of 6
pro vyhledávání: '"Sebastião Firmo"'
Publikováno v:
Astérisque. 415:113-156
Autor:
Javier Ribón, Sebastião Firmo
Publikováno v:
Ergodic Theory and Dynamical Systems. 40:3339-3367
An isotopic to the identity map of the 2-torus, that has zero rotation vector with respect to an invariant ergodic probability measure, has a fixed point by a theorem of Franks. We give a version of this result for nilpotent subgroups of isotopic to
Autor:
Sebastião Firmo, Javier Ribón
A homeomorphism of the $2$-torus with Lefschetz number different from zero has a fixed point. We give a version of this result for nilpotent groups of diffeomorphisms. We prove that a nilpotent group of $2$-torus diffeomorphims has finite orbits when
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::6ee8f938bc650931fd8ff2bcde7f73c8
Autor:
Sebastião Firmo, Christian Bonatti
Publikováno v:
Annales scientifiques de l'École normale supérieure. 27:407-462
Autor:
Suely Druck, Sebastião Firmo
Publikováno v:
J. Math. Soc. Japan 55, no. 1 (2003), 13-37
We consider the group of diffeomorphisms of a compact manifold $M$ which preserve a codimension one foliation $F$ on $M$ . For the $C^{2}$ case if $F$ has compact leaves with nontrivial holonomy then at least one of these leaves is periodic. Our main
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::8730c64ff0fbecc590442dc2e5c159ee
http://projecteuclid.org/euclid.jmsj/1196890839
http://projecteuclid.org/euclid.jmsj/1196890839
We prove that for each integer k of at least 2, there is an open neigborhood \nu_k of the identity map of the 2-sphere S^2, in C^1-topology such that: if G is a nilpotent subgroup of Diff^1(S^2) with length k of nilpotency, generated by elements in \
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::cc35d185563894160bb43dfe3b762968
http://arxiv.org/abs/math/0109015
http://arxiv.org/abs/math/0109015