Zobrazeno 1 - 10
of 60
pro vyhledávání: '"Seaton, Katherine A."'
Autor:
Seaton, Katherine A., Hayes, Carol
Two mathematical aspects of the centuries-old Japanese sashiko stitching form hitomezashi are discussed: the encoding of designs using words from a binary alphabet, and duality. Traditional hitomezashi designs are analysed using these two ideas. Self
Externí odkaz:
http://arxiv.org/abs/2208.12580
Autor:
Seaton, Katherine A.
D-forms have in the past been created from inflexible materials, or considered as abstract mathematical objects. This paper describes a number of realisations of D-forms, and the related pita-forms, in textiles. Examples are given in which the create
Externí odkaz:
http://arxiv.org/abs/2103.09649
Autor:
Hayes, Carol, Seaton, Katherine
Publikováno v:
Proceedings of Bridges 2020, pp.517-524
Through the hands-on creation of two sashiko pieces of work - a counted thread kogin bookmark and a single running stitched hitomezashi sampler - participants will explore not only the living cultural history of this traditional Japanese needlework b
Externí odkaz:
http://arxiv.org/abs/2003.14235
Autor:
Seaton, Katherine A., Hirsch, David
Publikováno v:
Proceedings of Bridges 2020, pp.371-374
We describe the construction of a new family of developable rollers based on the Platonic solids. In this way kinetic sculptures may be realised, with the Platonic solids quite literally in their heart. We also describe the strong way in which the Pl
Externí odkaz:
http://arxiv.org/abs/2003.06253
Autor:
Hirsch, David, Seaton, Katherine A.
Publikováno v:
Journal of Mathematics and the Arts, 14:4,2020, pp.345-359
This paper introduces a new family of solids, which we call \textit{polycons}, which generalise the sphericon in a natural way. The static properties of the polycons are derived, and their rolling behaviour is described and compared to that of other
Externí odkaz:
http://arxiv.org/abs/1901.10677
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Seaton, Katherine A.
Publikováno v:
Journal of Mathematics and the Arts, 11:4,2017, pp.187-202
Sphericons and D-forms are 3D objects created and described by artists, which have separately received attention in the mathematical literature in the last 15 or so years. The attempt to classify a seamed, crocheted form geometrically led to the obse
Externí odkaz:
http://arxiv.org/abs/1603.08409
Autor:
Pearce, Paul A., Seaton, Katherine A.
We consider the integrable minimal models ${\cal M}(m,m';t)$, corresponding to the $\varphi_{1,3}$ perturbation off-criticality, in the {\it logarithmic limit\,} $m, m'\to\infty$, $m/m'\to p/p'$ where $p, p'$ are coprime and the limit is taken throug
Externí odkaz:
http://arxiv.org/abs/1207.0259
Autor:
Seaton, Katherine A, Hackett, Lisa M
Publikováno v:
Physica A339 (2004) 635-644
The clustering coefficient, path length and average vertex degree of two urban train line networks have been calculated. The results are compared with theoretical predictions for appropriate random bipartite graphs. They have also been compared with
Externí odkaz:
http://arxiv.org/abs/cond-mat/0311254
Autor:
Korff, Christian, Seaton, Katherine A.
Publikováno v:
Nucl.Phys. B636 (2002) 435-464
The leading excitations of the dilute $A_L$ model in regime 2 are considered using analytic arguments. The model can be identified with the integrable $\phi_{1,2}$ perturbation of the unitary minimal series $M_{L,L+1}$. It is demonstrated that the ex
Externí odkaz:
http://arxiv.org/abs/cond-mat/0204232