Zobrazeno 1 - 10
of 209
pro vyhledávání: '"Seara,Carlos"'
Autor:
Alegría, Carlos, Mantas, Ioannis, Papadopoulou, Evanthia, Savić, Marko, Seara, Carlos, Suderland, Martin
Publikováno v:
In Proceedings of the 29th Annual European Symposium on Algorithms (ESA 2021), pages 5:1-5:16, 2021
We study the Voronoi Diagram of Rotating Rays, a Voronoi structure where the input sites are rays and the distance function between a point and a site/ray, is the counterclockwise angular distance. This novel Voronoi diagram is motivated by illuminat
Externí odkaz:
http://arxiv.org/abs/2304.11429
Autor:
Pérez-Lantero, Pablo, Seara, Carlos
Let $R$ and $B$ be two disjoint point sets in the plane with $|R|=|B|=n$. Let $\mathcal{M}=\{(r_i,b_i),i=1,2,\ldots,n\}$ be a perfect matching that matches points of $R$ with points of $B$ and maximizes $\sum_{i=1}^n\|r_i-b_i\|$, the total Euclidean
Externí odkaz:
http://arxiv.org/abs/2301.06649
Let $P$ be a set of $n$ points in $\mathbb{R}^3$ in general position, and let $RCH(P)$ be the rectilinear convex hull of $P$. In this paper we obtain an optimal $O(n\log n)$-time and $O(n)$-space algorithm to compute $RCH(P)$. We also obtain an effic
Externí odkaz:
http://arxiv.org/abs/2209.06020
We explore the separability of point sets in the plane by a restricted-orientation convex hull, which is an orientation-dependent, possibly disconnected, and non-convex enclosing shape that generalizes the convex hull. Let $R$ and $B$ be two disjoint
Externí odkaz:
http://arxiv.org/abs/2209.04258
Publikováno v:
In Results in Applied Mathematics November 2024 24
We present an $O(nrG)$ time algorithm for computing and maintaining a minimum length shortest watchman tour that sees a simple polygon under monotone visibility in direction $\theta$, while $\theta$ varies in $[0,180^{\circ})$, obtaining the directio
Externí odkaz:
http://arxiv.org/abs/2007.08368