Zobrazeno 1 - 10
of 106
pro vyhledávání: '"Se Young Chun"'
Publikováno v:
PLoS ONE, Vol 18, Iss 11 (2023)
Externí odkaz:
https://doaj.org/article/3364af099822486f83a479e039dc9f25
Autor:
Yunsook Kang, Yoo Jung Kim, Seongkeun Park, Gun Ro, Choyeon Hong, Hyungjoon Jang, Sungduk Cho, Won Jae Hong, Dong Un Kang, Jonghoon Chun, Kyoungbun Lee, Gyeong Hoon Kang, Kyoung Chul Moon, Gheeyoung Choe, Kyu Sang Lee, Jeong Hwan Park, Won-Ki Jeong, Se Young Chun, Peom Park, Jinwook Choi
Publikováno v:
BMC Medical Informatics and Decision Making, Vol 21, Iss 1, Pp 1-8 (2021)
Abstract Background Artificial intelligence (AI) research is highly dependent on the nature of the data available. With the steady increase of AI applications in the medical field, the demand for quality medical data is increasing significantly. We h
Externí odkaz:
https://doaj.org/article/e5c55da68d9e4ddbb087f995abc4bc10
Autor:
Hanvit Kim, Se Young Chun
Publikováno v:
IEEE Access, Vol 7, Pp 9232-9242 (2019)
Electrocardiogram (ECG) has been investigated as promising biometrics, but it cannot be canceled and re-used once compromised just like other biometrics. We propose methods to overcome the issue of irrevocability in ECG biometrics without compromisin
Externí odkaz:
https://doaj.org/article/c43498f7514046e6a87b163b45146e47
Autor:
Hanvit Kim, Haena Kim, Se Young Chun, Jae-Hwan Kang, Ian Oakley, Youryang Lee, Jun Oh Ryu, Min Joon Kim, In Kyu Park, Hyuck Ki Hong, Young Chang Jo, Sung-Phil Kim
Publikováno v:
Sensors, Vol 18, Iss 8, p 2738 (2018)
Multimodal biometrics are promising for providing a strong security level for personal authentication, yet the implementation of a multimodal biometric system for practical usage need to meet such criteria that multimodal biometric signals should be
Externí odkaz:
https://doaj.org/article/2fe4d39056cf42b892f534d2c4e03eee
Publikováno v:
Pattern Recognition Letters. 156:1-6
Publikováno v:
2023 International Conference on Electronics, Information, and Communication (ICEIC).
Autor:
Andrey Ignatov, Grigory Malivenko, Radu Timofte, Lukasz Treszczotko, Xin Chang, Piotr Ksiazek, Michal Lopuszynski, Maciej Pioro, Rafal Rudnicki, Maciej Smyl, Yujie Ma, Zhenyu Li, Zehui Chen, Jialei Xu, Xianming Liu, Junjun Jiang, XueChao Shi, Difan Xu, Yanan Li, Xiaotao Wang, Lei Lei, Ziyu Zhang, Yicheng Wang, Zilong Huang, Guozhong Luo, Gang Yu, Bin Fu, Jiaqi Li, Yiran Wang, Zihao Huang, Zhiguo Cao, Marcos V. Conde, Denis Sapozhnikov, Byeong Hyun Lee, Dongwon Park, Seongmin Hong, Joonhee Lee, Seunggyu Lee, Se Young Chun
Publikováno v:
Lecture Notes in Computer Science ISBN: 9783031250651
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::6df129ff89c685865a6fb6a252f301ae
https://doi.org/10.1007/978-3-031-25066-8_4
https://doi.org/10.1007/978-3-031-25066-8_4
Autor:
Andrey Ignatov, Radu Timofte, Maurizio Denna, Abdel Younes, Ganzorig Gankhuyag, Jingang Huh, Myeong Kyun Kim, Kihwan Yoon, Hyeon-Cheol Moon, Seungho Lee, Yoonsik Choe, Jinwoo Jeong, Sungjei Kim, Maciej Smyl, Tomasz Latkowski, Pawel Kubik, Michal Sokolski, Yujie Ma, Jiahao Chao, Zhou Zhou, Hongfan Gao, Zhengfeng Yang, Zhenbing Zeng, Zhengyang Zhuge, Chenghua Li, Dan Zhu, Mengdi Sun, Ran Duan, Yan Gao, Lingshun Kong, Long Sun, Xiang Li, Xingdong Zhang, Jiawei Zhang, Yaqi Wu, Jinshan Pan, Gaocheng Yu, Jin Zhang, Feng Zhang, Zhe Ma, Hongbin Wang, Hojin Cho, Steve Kim, Huaen Li, Yanbo Ma, Ziwei Luo, Youwei Li, Lei Yu, Zhihong Wen, Qi Wu, Haoqiang Fan, Shuaicheng Liu, Lize Zhang, Zhikai Zong, Jeremy Kwon, Junxi Zhang, Mengyuan Li, Nianxiang Fu, Guanchen Ding, Han Zhu, Zhenzhong Chen, Gen Li, Yuanfan Zhang, Lei Sun, Dafeng Zhang, Neo Yang, Fitz Liu, Jerry Zhao, Mustafa Ayazoglu, Bahri Batuhan Bilecen, Shota Hirose, Kasidis Arunruangsirilert, Luo Ao, Ho Chun Leung, Andrew Wei, Jie Liu, Qiang Liu, Dahai Yu, Ao Li, Lei Luo, Ce Zhu, Seongmin Hong, Dongwon Park, Joonhee Lee, Byeong Hyun Lee, Seunggyu Lee, Se Young Chun, Ruiyuan He, Xuhao Jiang, Haihang Ruan, Xinjian Zhang, Jing Liu, Garas Gendy, Nabil Sabor, Jingchao Hou, Guanghui He
Publikováno v:
Lecture Notes in Computer Science ISBN: 9783031250651
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::cf46877ec409bb429e6107420507ae1a
https://doi.org/10.1007/978-3-031-25066-8_5
https://doi.org/10.1007/978-3-031-25066-8_5
Publikováno v:
2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI).
Publikováno v:
IEEE Journal of Selected Topics in Signal Processing. 14:1112-1125
Recently, deep neural network (DNN) based methods for low-dose CT have been investigated to achieve excellent performance in both image quality and computational speed. However, almost all methods using DNNs for low-dose CT require clean ground truth