Zobrazeno 1 - 6
of 6
pro vyhledávání: '"Scott A. Musman"'
Publikováno v:
Artificial Intelligence and Machine Learning for Multi-Domain Operations Applications.
Publikováno v:
Neural Networks. 7:709-728
A comparison of the unsupervised Projection Pursuit learning algorithm (BCM), with supervised backward propagation (BP) and a laterally inhibited version of BP (LIBP) was performed. Simulated inverse synthetic aperature radar (ISAR) presentations ser
Publikováno v:
International Journal of Pattern Recognition and Artificial Intelligence. :513-526
Many classification problems must be performed in a timely or time constrained manner. For this reason, the generation of control schemes which are capable of responding in real-time are fundamental to many applications. For our problem, that of ship
Publikováno v:
Neural Networks for Signal Processing II Proceedings of the 1992 IEEE Workshop.
The use of neural networks for the classification of simulated inverse synthetic aperture radar imagery is investigated. Symmetries of the artificial imagery make the use of localized moments a convenient preprocessing tool for the inputs to a neural
Inverse synthetic aperture radar (ISAR) produces images of ships at sea which human operators can be trained to recognize. Because ISAR uses the ship's own varying angular motions (roll, pitch, and yaw) for cross-range resolution, the viewing aspect
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::ddc1c4b88bcb7d54470bb8750bf5c013
https://zenodo.org/record/1262436
https://zenodo.org/record/1262436
Conference
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.