Zobrazeno 1 - 10
of 91
pro vyhledávání: '"Schwede, Stefan"'
Autor:
Schwede, Stefan, Striller, Benjamin, Teichmann, Jens, Herlitzius, Thomas, Schiller, Felix, Schneider, Martin, Paul, Lisa-Marie, Martini, Daniel
Publikováno v:
Schriftenreihe des Landesamtes für Umwelt, Landwirtschaft und Geologie.
Der Bericht informiert über die Untersuchung zur Kombination von Maschinenmanagementsystemen mit Agrarsoftwareanwendungen zur Bereitstellung digitaler Daten und deren Weiterleitung in Farm-Management-Information-Systemen (FMIS) sächsischer Landwirt
Given a discrete group $G$ with a finite model for $\underline{E}G$, we study $K(n)^*(BG)$ and $E^*(BG)$, where $K(n)$ is the $n$-th Morava $K$-theory for a given prime and $E$ is the height $n$ Morava $E$-theory. In particular we generalize the char
Externí odkaz:
http://arxiv.org/abs/2410.14510
Autor:
Hausmann, Markus, Schwede, Stefan
We propose a formalism to capture the structure of the equivariant bordism rings of smooth manifolds with commuting involutions. We introduce the concept of an oriented el$_2^{RO}$-algebra, an algebraic structure featuring representation graded rings
Externí odkaz:
http://arxiv.org/abs/2406.00404
Autor:
Hausmann, Markus, Schwede, Stefan
We calculate the representation-graded Bredon homology rings of all elementary abelian 2-groups with coefficients in the constant mod-2 Mackey functor. We exhibit minimal presentations for these rings as quotients of the polynomial algebra on the pre
Externí odkaz:
http://arxiv.org/abs/2403.05355
Autor:
Schwede, Stefan
Publikováno v:
Forum of Mathematics, Sigma, (2024), Vol. 12:e7 1-11
We introduce Chern classes in $U(m)$-equivariant homotopical bordism that refine the Conner-Floyd-Chern classes in the $MU$-cohomology of $B U(m)$. For products of unitary groups, our Chern classes form regular sequences that generate the augmentatio
Externí odkaz:
http://arxiv.org/abs/2303.12366
Autor:
Schwede, Stefan
Publikováno v:
Documenta Mathematica 27 (2022), 789-845
We prove global equivariant refinements of Miller's stable splittings of the infinite orthogonal, unitary and symplectic groups, and more generally of the spaces $O/O(m)$, $U/U(m)$ and $Sp/Sp(m)$. As such, our results encode compatible equivariant st
Externí odkaz:
http://arxiv.org/abs/2106.02379
Autor:
Schwede, Stefan
Publikováno v:
Proceedings of the London Mathematical Society 125 (2022), 258-276
We establish natural splittings for the values of global Mackey functors at orthogonal, unitary and symplectic groups. In particular, the restriction homomorphisms between the orthogonal, unitary and symplectic groups of adjacent dimensions are natur
Externí odkaz:
http://arxiv.org/abs/2006.09435
Autor:
Schwede, Stefan
Publikováno v:
Journal of Topology 15 (2022), 1325-1454
We introduce a global equivariant refinement of algebraic K-theory; here `global equivariant' refers to simultaneous and compatible actions of all finite groups. Our construction turns a specific kind of categorical input data into a global $\Omega$-
Externí odkaz:
http://arxiv.org/abs/1912.08872