Zobrazeno 1 - 10
of 256
pro vyhledávání: '"Schwarzacher, S."'
In this paper, we study the thermo-elastodynamics of nonlinearly viscous solids in the Kelvin-Voigt rheology where both the elastic and the viscous stress tensors comply with the frame-indifference principle. The system features a force balance inclu
Externí odkaz:
http://arxiv.org/abs/2409.01229
The paper deals with the rebound of an elastic solid off a rigid wall of a container filled with an incompressible Newtonian fluid. Our study focuses on a collision-free bounce, meaning a rebound without topological contact between the elastic solid
Externí odkaz:
http://arxiv.org/abs/2310.02123
We study injectivity for models of Nonlinear Elasticity that involve the second gradient. We assume that $\Omega\subset\mathbb{R}^n$ is a domain, $f\in W^{2,q}(\Omega,\mathbb{R}^n)$ satisfies $|J_f|^{-a}\in L^1$ and that $f$ equals a given homeomorph
Externí odkaz:
http://arxiv.org/abs/2204.05559
Publikováno v:
In Computer Methods in Applied Mechanics and Engineering 15 March 2024 422
In this work we consider a poroelastic flexible material that may deform largely which is situated in an incompressible fluid driven by the Navier-Stokes equations in two or three space dimensions. By a variational approach we show existence of weak
Externí odkaz:
http://arxiv.org/abs/2101.09578
Publikováno v:
In Nonlinear Analysis: Real World Applications June 2023 71
Publikováno v:
Calc. Var., 58, No. 185, 2019
We study regularity results for nonlinear parabolic systems of $p$-Laplacian type with inhomogeneous boundary and initial data, with $p\in(\frac{2n}{n+2},\infty)$. We show bounds on the gradient of solutions in the Lebesgue-spaces with arbitrary larg
Externí odkaz:
http://arxiv.org/abs/1810.09144
We develop an improved version of the parabolic Lipschitz truncation, which allows qualitative control of the distributional time derivative and the preservation of zero boundary values. As a consequence, we establish a new caloric approximation lemm
Externí odkaz:
http://arxiv.org/abs/1606.01706
Publikováno v:
SIAM J. Numer. Anal. 53, 551--572. (2015)
We study a~priori estimates for the Dirichlet problem of the $p(\cdot)$-Laplacian, \[-\mathrm{div}(|\nabla v|^{p(\cdot)-2} \nabla v) = f. \] We show that the gradients of the finite element approximation with zero boundary data converges with rate $O
Externí odkaz:
http://arxiv.org/abs/1311.5121
Publikováno v:
Annali.di.Matematica.Pura.ed.Applicata 23 (2013) 2671-2700
We consider functions $u\in L^\infty(L^2)\cap L^p(W^{1,p})$ with $1
Externí odkaz:
http://arxiv.org/abs/1209.6522