Zobrazeno 1 - 10
of 28
pro vyhledávání: '"Schwahn, Paul"'
We study the deformability of the symmetric Einstein metrics on the spaces $\mathrm{SU}(n)/\mathrm{SO}(n)$ and $\mathrm{SU}(2n)/\mathrm{Sp}(n)$, thereby concluding the problem to second order for all irreducible symmetric spaces. The obstruction inte
Externí odkaz:
http://arxiv.org/abs/2412.08770
Autor:
Moroianu, Andrei, Schwahn, Paul
In the absence of a de Rham decomposition theorem for geometries with torsion, we develop and unify ways to view a geometry with parallel skew torsion as the total space of a locally defined, not necessarily unique Riemannian submersion with totally
Externí odkaz:
http://arxiv.org/abs/2409.14421
Autor:
Schwahn, Paul, Semmelmann, Uwe
We study the integrability to second order of the infinitesimal Einstein deformations of the symmetric metric $g$ on the complex Grassmannian of $k$-planes inside $\mathbb{C}^n$. By showing the nonvanishing of Koiso's obstruction polynomial, we chara
Externí odkaz:
http://arxiv.org/abs/2403.04681
Autor:
Schwahn, Paul
We give a new formula for the Lichnerowicz Laplacian on normal homogeneous spaces in terms of Casimir operators. We derive some practical estimates and apply them to the known list of non-symmetric, compact, simply connected homogeneous spaces $G/H$
Externí odkaz:
http://arxiv.org/abs/2304.10607
We prove that the normal metric on the homogeneous space $E_7/\mathrm{PSO}(8)$ is stable with respect to the Einstein-Hilbert action, thereby exhibiting the first known example of a non-symmetric metric of positive scalar curvature with this property
Externí odkaz:
http://arxiv.org/abs/2203.10138
Autor:
Schwahn, Paul
Any $6$-dimensional strict nearly K\"ahler manifold is Einstein with positive scalar curvature. We compute the coindex of the metric with respect to the Einstein-Hilbert functional on each of the compact homogeneous examples. Moreover, we show that t
Externí odkaz:
http://arxiv.org/abs/2203.08005
Autor:
Schwahn, Paul
We prove the linear stability with respect to the Einstein-Hilbert action of the symmetric spaces $\mathrm{SU}(n)$, $n\geq3$, and $E_6/F_4$. Combined with earlier results, this resolves the stability problem for irreducible symmetric spaces of compac
Externí odkaz:
http://arxiv.org/abs/2012.10524
Publikováno v:
In Advances in Mathematics 1 November 2023 432
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.