Zobrazeno 1 - 10
of 41
pro vyhledávání: '"Schuhmann Christoph"'
Autor:
Köpf, Andreas, Kilcher, Yannic, von Rütte, Dimitri, Anagnostidis, Sotiris, Tam, Zhi-Rui, Stevens, Keith, Barhoum, Abdullah, Duc, Nguyen Minh, Stanley, Oliver, Nagyfi, Richárd, ES, Shahul, Suri, Sameer, Glushkov, David, Dantuluri, Arnav, Maguire, Andrew, Schuhmann, Christoph, Nguyen, Huu, Mattick, Alexander
Aligning large language models (LLMs) with human preferences has proven to drastically improve usability and has driven rapid adoption as demonstrated by ChatGPT. Alignment techniques such as supervised fine-tuning (SFT) and reinforcement learning fr
Externí odkaz:
http://arxiv.org/abs/2304.07327
Autor:
Cherti, Mehdi, Beaumont, Romain, Wightman, Ross, Wortsman, Mitchell, Ilharco, Gabriel, Gordon, Cade, Schuhmann, Christoph, Schmidt, Ludwig, Jitsev, Jenia
Publikováno v:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2023, pp. 2818-2829
Scaling up neural networks has led to remarkable performance across a wide range of tasks. Moreover, performance often follows reliable scaling laws as a function of training set size, model size, and compute, which offers valuable guidance as large-
Externí odkaz:
http://arxiv.org/abs/2212.07143
Autor:
Schuhmann, Christoph, Beaumont, Romain, Vencu, Richard, Gordon, Cade, Wightman, Ross, Cherti, Mehdi, Coombes, Theo, Katta, Aarush, Mullis, Clayton, Wortsman, Mitchell, Schramowski, Patrick, Kundurthy, Srivatsa, Crowson, Katherine, Schmidt, Ludwig, Kaczmarczyk, Robert, Jitsev, Jenia
Groundbreaking language-vision architectures like CLIP and DALL-E proved the utility of training on large amounts of noisy image-text data, without relying on expensive accurate labels used in standard vision unimodal supervised learning. The resulti
Externí odkaz:
http://arxiv.org/abs/2210.08402
Autor:
Schuhmann, Christoph, Vencu, Richard, Beaumont, Romain, Kaczmarczyk, Robert, Mullis, Clayton, Katta, Aarush, Coombes, Theo, Jitsev, Jenia, Komatsuzaki, Aran
Multi-modal language-vision models trained on hundreds of millions of image-text pairs (e.g. CLIP, DALL-E) gained a recent surge, showing remarkable capability to perform zero- or few-shot learning and transfer even in absence of per-sample labels on
Externí odkaz:
http://arxiv.org/abs/2111.02114
Autor:
Jung Philip H, Mueller Marisa, Schuhmann Christoph, Eickhoff Madeleine, Schneider Philip, Seemueller Gueler, Dutton Raphael, Rieber Johannes, Kääb Stefan, Sohn Hae-Young
Publikováno v:
Cardiovascular Ultrasound, Vol 11, Iss 1, p 1 (2013)
Abstract Aims Transesophageal echocardiography (TEE) is the gold standard for the detection of thrombi in patients with atrial fibrillation (AF) before undergoing early electrical cardioversion (CV). However, TEE generates inconclusive results in a c
Externí odkaz:
https://doaj.org/article/8c91413ce464439aad11c83a73d4b3f7
Autor:
LACKERMAIR, Korbinian, SCHÜTTLER, Dominik, KELLNAR, Antonia, SCHUHMANN, Christoph G., WECKBACH, Ludwig T., BRUNNER, Stefan
Publikováno v:
Physiol Res
Exposure to high altitudes and exercise alters body’s physiology and may cause acute cardiovascular events. Platelet activation is one of the key players in these events. Therefore, we investigated the effect of vigorous exercise at higher altitude
Autor:
Lackermair, Korbinian1, Schuhmann, Christoph G.1, Kubieniec, Michaela1, Riesinger, Lisa M.1, Klier, Ina1, Stocker, Thomas J.1, Kääb, Stefan1, Estner, Heidi L.1, Fichtner, Stephanie1
Publikováno v:
BioMed Research International. 6/27/2018, Vol. 2018, p1-6. 6p.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Schuhmann, Christoph
PRINTAUSGABE: 1 CD als BEILAGE! -- Diese Diplomarbeit präsentiert ein didaktisches Konzept für den Informatikunterricht, das den SuS Kenntnisse und Kompetenzen in prozeduraler und objektorientierter Programmierung vermitteln soll. Dabei werden kein
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::12f0077e9b90e6aeb97361efce20fb0c