Zobrazeno 1 - 10
of 995
pro vyhledávání: '"Schrödinger system"'
Autor:
Saleh Almuthaybiri, Tarek Saanouni
Publikováno v:
AIMS Mathematics, Vol 9, Iss 10, Pp 27871-27895 (2024)
This work studies a coupled non-linear Schrödinger system with a singular source term. First, we investigate the question of the local existence of solutions. Second, one proves the existence of global solutions which scatter in some Sobolev spaces.
Externí odkaz:
https://doaj.org/article/a225b07af66341e89f5cc05484912254
Autor:
Yonghang Chang, Menglan Liao
Publikováno v:
AIMS Mathematics, Vol 9, Iss 9, Pp 25659-25688 (2024)
In this paper, the Cauchy problem for a class of coupled system of the four-dimensional cubic focusing nonlinear Schrödinger equations was investigated. By exploiting the double Duhamel method and the long-time Strichartz estimate, the global well-p
Externí odkaz:
https://doaj.org/article/b859966e9bcc47f493aee5b4e49f2089
Autor:
Elhoussain Arhrrabi, Hamza El-Houari
Publikováno v:
Cubo, Vol 26, Iss 3, Pp 407-430 (2024)
This study extensively investigates a specific category of Kirchhoff-Schrödinger systems in fractional Sobolev space with Dirichlet boundary conditions. The main focus is on exploring the existence and multiplicity of non-negative solutions. The non
Externí odkaz:
https://doaj.org/article/74535d2b34034d92b79077a54a9db550
Autor:
Zhang Xue, Zhang Jing
Publikováno v:
Open Mathematics, Vol 22, Iss 1, Pp 40-339 (2024)
In this article, we consider the following quasilinear Schrödinger system: −εΔu+u+k2ε[Δ∣u∣2]u=2αα+β∣u∣α−2u∣v∣β,x∈RN,−εΔv+v+k2ε[Δ∣v∣2]v=2βα+β∣u∣α∣v∣β−2v,x∈RN,\left\{\begin{array}{ll}-\varepsilon \
Externí odkaz:
https://doaj.org/article/7c47e401244944bd9e6c963602f9caf4
Publikováno v:
Cubo, Vol 26, Iss 1, Pp 53-73 (2024)
This paper focuses on the investigation of a Kirchhoff-Schrödinger type elliptic system involving a fractional \(\gamma(.)\)-Laplacian operator. The primary objective is to establish the existence of weak solutions for this system within the framewo
Externí odkaz:
https://doaj.org/article/2c37b332f3254171b0fd3dffcf55d26b
Autor:
Yonghang Chang, Menglan Liao
Publikováno v:
Communications in Analysis and Mechanics, Vol 16, Iss 2, Pp 293-306 (2024)
In this paper, the Cauchy problem for the nonlinear Schrödinger system $ \begin{equation*} \begin{cases} i\partial_tu_1(x, t) = \Delta u_1(x, t)-|u_1(x, t)|^{p-1}u_1(x, t)-|u_2(x, t)|^{p-1}u_1(x, t), \\ i\partial_tu_2(x, t) = \Delta u_2(x, t)-|u_
Externí odkaz:
https://doaj.org/article/a8db10c07b704f7c94685064b8280a26
Publikováno v:
Alexandria Engineering Journal, Vol 90, Iss , Pp 7-16 (2024)
The paper discusses investigating the behavior of the discrete nonlinear Schrödinger (DNLS) system. This technique combines the exponential function method and the rational function method to obtain exact solutions for a wide range of nonlinear diff
Externí odkaz:
https://doaj.org/article/da4634f8f19f4225a4d1cba690e1eac7
Autor:
Xue Zhang, Jing Zhang
Publikováno v:
Frontiers in Physics, Vol 12 (2024)
In this paper, we consider the following quasilinear Schrödinger system.−Δu+u+k2Δ|u|2u=2αα+β|u|α−2u|v|β,x∈RN,−Δv+v+k2Δ|v|2v=2βα+β|u|α|v|β−2v,x∈RN,where k < 0 is a real constant, α > 1, β > 1, and α + β < 2*. We take adv
Externí odkaz:
https://doaj.org/article/3e52d2fa85f94803989f0a3bac88765a
Publikováno v:
AIMS Mathematics, Vol 8, Iss 11, Pp 27033-27051 (2023)
The current manuscript focuses on the solution and analysis of space and time fractional coupled Schrödinger system that belongs to a class of evolution equations. These systems encounter in different fields related to plasma waves, optics, and quan
Externí odkaz:
https://doaj.org/article/1516bb1227f14206920a3d9521f50cff
Autor:
Dengfeng Lu, Shuwei Dai
Publikováno v:
AIMS Mathematics, Vol 8, Iss 7, Pp 17142-17153 (2023)
In this paper, a class of systems of three-component coupled nonlinear fractional Schrödinger equations with general nonlinearities is investigated. Without any monotonicity condition and the Ambrosetti-Rabinowitz growth condition, we obtain some no
Externí odkaz:
https://doaj.org/article/77883727e10f42c3bf6afaaf2ce01dc7