Zobrazeno 1 - 10
of 7 240
pro vyhledávání: '"Schrödinger Equations"'
Autor:
BALMASEDA, AITOR1,2 abalmase@math.uc3m.es, LONIGRO, DAVIDE3,4 davide.lonigro@fau.de, PÉREZ-PARDO, JUAN MANUEL1,5 jmppardo@math.uc3m.es
Publikováno v:
SIAM Journal on Control & Optimization. 2024, Vol. 62 Issue 2, p826-852. 27p.
Autor:
Zhao, Tianchen1 (AUTHOR), Sun, Chuhao1 (AUTHOR), Cohen, Asaf1 (AUTHOR) shloshim@gmail.com, Stokes, James1 (AUTHOR), Veerapaneni, Shravan1 (AUTHOR)
Publikováno v:
Quantitative Finance. Jan2024, Vol. 24 Issue 1, p1-11. 11p.
Autor:
M.H. Heydari, M. Razzaghi
Publikováno v:
Alexandria Engineering Journal, Vol 107, Iss , Pp 73-86 (2024)
In this work, the Caputo-type Hadamard fractional derivative is utilized to introduce a coupled system of time fractional Klein–Gordon-Schrödinger equations. The classical and shifted Jacobi polynomials are simultaneously applied to make a numeric
Externí odkaz:
https://doaj.org/article/d727073bdae1449f8d2a1e4906b33b12
Autor:
Jiaming Luo, Jalil Manafian, Baharak Eslami, K. H. Mahmoud, Rohit Sharma, Neha Kumari, A. SA. Alsubaie
Publikováno v:
Scientific Reports, Vol 14, Iss 1, Pp 1-23 (2024)
Abstract In this research article, the (1+1)- and (2+1)-dimensional Chiral nonlinear Schrödinger equations (CNLSEs) are studied, which play an important role in the development of quantum mechanics, particularly in the field of quantum Hall effect.
Externí odkaz:
https://doaj.org/article/09ca2509c96448b1a598f5ec41077bd9
Autor:
Ricardo Weder
Publikováno v:
Opuscula Mathematica, Vol 44, Iss 6, Pp 899-916 (2024)
We prove a reverse Lieb-Thirring inequality with a sharp constant for the matrix Schrödinger equation on the half-line.
Externí odkaz:
https://doaj.org/article/29e2dab40d654a959433d4acf42a603e
Publikováno v:
Boundary Value Problems, Vol 2024, Iss 1, Pp 1-17 (2024)
Abstract In this paper, we focus on studying a fractional Schrödinger equation of the form { ( − Δ ) s u + V ( x ) u = f ( x , u ) in Ω , u > 0 in Ω , u = 0 in R n ∖ Ω , $$ \textstyle\begin{cases}(-\Delta )^{s}u+V(x)u = f(x,u) &\text{in }\Om
Externí odkaz:
https://doaj.org/article/eded5d61775540f9bfd62b2c9fc7e61d
Autor:
Jun Wang, Zhaoyang Yin
Publikováno v:
Electronic Journal of Qualitative Theory of Differential Equations, Vol 2024, Iss 53, Pp 1-53 (2024)
In this paper, we study the following Schrödinger equations with potentials and general nonlinearities \begin{equation*} \begin{cases} -\Delta u+V(x)u+\lambda u=|u|^{q-2}u+\beta f(u), \\ \int |u|^2dx=\Theta, \end{cases} \end{equation*} both on $\m
Externí odkaz:
https://doaj.org/article/feca35162eef4d8d9bcf1ee6572a00d6
Publikováno v:
AIMS Mathematics, Vol 9, Iss 9, Pp 24359-24371 (2024)
Nonlinear Schrödinger equations are a key paradigm in nonlinear research, attracting both mathematical and physical attention. This work was primarily concerned with the usage of a reliable analytic technique in order to solve two models of (2+1)-di
Externí odkaz:
https://doaj.org/article/1c3b16bf9a934cbaa9cc19247c67d048
Publikováno v:
Advances in Nonlinear Analysis, Vol 13, Iss 1, Pp 1565-1586 (2024)
In this article, we investigate the following nonlinear magnetic Schrödinger equations: (−i∇+A(x))2u+V(x)u=f1(x,∣v∣2)v,(−i∇+A(x))2v+V(x)v=f2(x,∣u∣2)u,\left\{\begin{array}{l}{\left(-i\nabla +A\left(x))}^{2}u+V\left(x)u={f}_{1}\left(x,
Externí odkaz:
https://doaj.org/article/8680845eb7f84769a2c97492278025bc